Gate-Tunable Atomically Thin Lateral MoS2 Schottky Junction Patterned by Electron Beam.
Nano Lett
; 16(6): 3788-94, 2016 06 08.
Article
en En
| MEDLINE
| ID: mdl-27152475
Among atomically thin two-dimensional (2D) materials, molybdenum disulfide (MoS2) is attracting considerable attention because of its direct bandgap in the 2H-semiconducting phase. On the other hand, a 1T-metallic phase has been revealed, bringing complementary application. Recently, thanks to top-down fabrication using electron beam (EB) irradiation techniques, in-plane 1T-metal/2H-semiconductor lateral (Schottky) MoS2 junctions were demonstrated, opening a path toward the co-integration of active and passive two-dimensional devices. Here, we report the first transport measurements evidencing the formation of a MoS2 Schottky barrier (SB) junction with barrier height of 0.13-0.18 eV created at the interface between EB-irradiated (1T)/nonirradiated (2H) regions. Our experimental findings, supported by state-of-the-art simulation, reveal unique device fingerprint of SB-based field-effect transistors made from atom-thin 1T layers.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Nano Lett
Año:
2016
Tipo del documento:
Article
Pais de publicación:
Estados Unidos