Characterizations of matrix and operator-valued Φ-entropies, and operator Efron-Stein inequalities.
Proc Math Phys Eng Sci
; 472(2187): 20150563, 2016 Mar.
Article
en En
| MEDLINE
| ID: mdl-27118909
We derive new characterizations of the matrix Φ-entropy functionals introduced in Chen & Tropp (Chen, Tropp 2014 Electron. J. Prob.19, 1-30. (doi:10.1214/ejp.v19-2964)). These characterizations help us to better understand the properties of matrix Φ-entropies, and are a powerful tool for establishing matrix concentration inequalities for random matrices. Then, we propose an operator-valued generalization of matrix Φ-entropy functionals, and prove the subadditivity under Löwner partial ordering. Our results demonstrate that the subadditivity of operator-valued Φ-entropies is equivalent to the convexity. As an application, we derive the operator Efron-Stein inequality.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Aspecto:
Determinantes_sociais_saude
/
Equity_inequality
Idioma:
En
Revista:
Proc Math Phys Eng Sci
Año:
2016
Tipo del documento:
Article
País de afiliación:
Australia
Pais de publicación:
Reino Unido