Your browser doesn't support javascript.
loading
Engineering the Transformation Strain in LiMnyFe1-yPO4 Olivines for Ultrahigh Rate Battery Cathodes.
Ravnsbæk, Dorthe B; Xiang, Kai; Xing, Wenting; Borkiewicz, Olaf J; Wiaderek, Kamila M; Gionet, Paul; Chapman, Karena W; Chupas, Peter J; Tang, Ming; Chiang, Yet-Ming.
Afiliación
  • Ravnsbæk DB; Department of Material Science and Engineering, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.
  • Xiang K; Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark , Campusvej 55, 5230, Odense M, Denmark.
  • Xing W; Department of Material Science and Engineering, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.
  • Borkiewicz OJ; Department of Material Science and Engineering, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.
  • Wiaderek KM; X-ray Science Division, Advanced Photon Source, Argonne National Laboratory , 9700 S. Cass Avenue, Argonne, Illinois 60439, United States.
  • Gionet P; X-ray Science Division, Advanced Photon Source, Argonne National Laboratory , 9700 S. Cass Avenue, Argonne, Illinois 60439, United States.
  • Chapman KW; A123-Systems , 200 West Street, Waltham, Massachusetts 02451, United States.
  • Chupas PJ; X-ray Science Division, Advanced Photon Source, Argonne National Laboratory , 9700 S. Cass Avenue, Argonne, Illinois 60439, United States.
  • Tang M; X-ray Science Division, Advanced Photon Source, Argonne National Laboratory , 9700 S. Cass Avenue, Argonne, Illinois 60439, United States.
  • Chiang YM; Department of Materials Science and NanoEngineering (MSNE), Rice University , 6100 Main MS-325, Houston, Texas 77005-1827, United States.
Nano Lett ; 16(4): 2375-80, 2016 Apr 13.
Article en En | MEDLINE | ID: mdl-26930492
Alkali ion intercalation compounds used as battery electrodes often exhibit first-order phase transitions during electrochemical cycling, accompanied by significant transformation strains. Despite ∼30 years of research into the behavior of such compounds, the relationship between transformation strain and electrode performance, especially the rate at which working ions (e.g., Li) can be intercalated and deintercalated, is still absent. In this work, we use the LiMnyFe1-yPO4 system for a systematic study, and measure using operando synchrotron radiation powder X-ray diffraction (SR-PXD) the dynamic strain behavior as a function of the Mn content (y) in powders of ∼50 nm average diameter. The dynamically produced strain deviates significantly from what is expected from the equilibrium phase diagrams and demonstrates metastability but nonetheless spans a wide range from 0 to 8 vol % with y. For the first time, we show that the discharge capacity at high C-rates (20-50C rate) varies in inverse proportion to the transformation strain, implying that engineering electrode materials for reduced strain can be used to maximize the power capability of batteries.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos