Your browser doesn't support javascript.
loading
Novel Approaches for Diagnosing Melanoma Skin Lesions Through Supervised and Deep Learning Algorithms.
Premaladha, J; Ravichandran, K S.
Afiliación
  • Premaladha J; School of Computing, SASTRA University, Tirumalaisamudram, Thanjavur, 613401, Tamilnadu, India. premaladha@sastra.edu.
  • Ravichandran KS; School of Computing, SASTRA University, Tirumalaisamudram, Thanjavur, 613401, Tamilnadu, India. raviks@it.sastra.edu.
J Med Syst ; 40(4): 96, 2016 Apr.
Article en En | MEDLINE | ID: mdl-26872778
Dermoscopy is a technique used to capture the images of skin, and these images are useful to analyze the different types of skin diseases. Malignant melanoma is a kind of skin cancer whose severity even leads to death. Earlier detection of melanoma prevents death and the clinicians can treat the patients to increase the chances of survival. Only few machine learning algorithms are developed to detect the melanoma using its features. This paper proposes a Computer Aided Diagnosis (CAD) system which equips efficient algorithms to classify and predict the melanoma. Enhancement of the images are done using Contrast Limited Adaptive Histogram Equalization technique (CLAHE) and median filter. A new segmentation algorithm called Normalized Otsu's Segmentation (NOS) is implemented to segment the affected skin lesion from the normal skin, which overcomes the problem of variable illumination. Fifteen features are derived and extracted from the segmented images are fed into the proposed classification techniques like Deep Learning based Neural Networks and Hybrid Adaboost-Support Vector Machine (SVM) algorithms. The proposed system is tested and validated with nearly 992 images (malignant & benign lesions) and it provides a high classification accuracy of 93 %. The proposed CAD system can assist the dermatologists to confirm the decision of the diagnosis and to avoid excisional biopsies.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neoplasias Cutáneas / Algoritmos / Diagnóstico por Computador / Dermoscopía / Melanoma Tipo de estudio: Diagnostic_studies / Prognostic_studies / Screening_studies Límite: Humans / Male Idioma: En Revista: J Med Syst Año: 2016 Tipo del documento: Article País de afiliación: India Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neoplasias Cutáneas / Algoritmos / Diagnóstico por Computador / Dermoscopía / Melanoma Tipo de estudio: Diagnostic_studies / Prognostic_studies / Screening_studies Límite: Humans / Male Idioma: En Revista: J Med Syst Año: 2016 Tipo del documento: Article País de afiliación: India Pais de publicación: Estados Unidos