Your browser doesn't support javascript.
loading
Tunable Percolation in Semiconducting Binary Polymer Nanoparticle Glasses.
Renna, Lawrence A; Bag, Monojit; Gehan, Timothy S; Han, Xu; Lahti, Paul M; Maroudas, Dimitrios; Venkataraman, D.
Afiliación
  • Renna LA; Department of Chemistry, University of Massachusetts Amherst , Amherst, Massachusetts 01003-9303, United States.
  • Bag M; Department of Chemistry, University of Massachusetts Amherst , Amherst, Massachusetts 01003-9303, United States.
  • Gehan TS; Department of Chemistry, University of Massachusetts Amherst , Amherst, Massachusetts 01003-9303, United States.
  • Han X; Department of Chemical Engineering, University of Massachusetts Amherst , Amherst, Massachusetts 01003-9303, United States.
  • Lahti PM; Department of Chemistry, University of Massachusetts Amherst , Amherst, Massachusetts 01003-9303, United States.
  • Maroudas D; Department of Chemical Engineering, University of Massachusetts Amherst , Amherst, Massachusetts 01003-9303, United States.
  • Venkataraman D; Department of Chemistry, University of Massachusetts Amherst , Amherst, Massachusetts 01003-9303, United States.
J Phys Chem B ; 120(9): 2544-56, 2016 Mar 10.
Article en En | MEDLINE | ID: mdl-26854924
Binary polymer nanoparticle glasses provide opportunities to realize the facile assembly of disparate components, with control over nanoscale and mesoscale domains, for the development of functional materials. This work demonstrates that tunable electrical percolation can be achieved through semiconducting/insulating polymer nanoparticle glasses by varying the relative percentages of equal-sized nanoparticle constituents of the binary assembly. Using time-of-flight charge carrier mobility measurements and conducting atomic force microscopy, we show that these systems exhibit power law scaling percolation behavior with percolation thresholds of ∼24-30%. We develop a simple resistor network model, which can reproduce the experimental data, and can be used to predict percolation trends in binary polymer nanoparticle glasses. Finally, we analyze the cluster statistics of simulated binary nanoparticle glasses, and characterize them according to their predominant local motifs as (p(i), p(1-i))-connected networks that can be used as a supramolecular toolbox for rational material design based on polymer nanoparticles.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: J Phys Chem B Asunto de la revista: QUIMICA Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: J Phys Chem B Asunto de la revista: QUIMICA Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos