Crystalline Direction Dependence of Spin Precession Angle and Its Application to Complementary Spin Logic Devices.
J Nanosci Nanotechnol
; 15(10): 7518-21, 2015 Oct.
Article
en En
| MEDLINE
| ID: mdl-26726362
In a semiconductor channel, spin-orbit interaction is divided into two terms, Rashba and Dresselhaus effects, which are key phenomena for modulating spin precession angles. The direction of Rashba field is always perpendicular to the wavevector but that of Dresselhaus field depends on the crystal orientation. Based on the individual Rashba and Dresselhaus strengths, we calculate spin precession angles for various crystal orientations in an InAs quantum well structure. When the channel length is 1 µm, the precession angle is 550° for the [110] direction and 460° for the [1-10] direction, respectively. Using the two spin transistors with different crystal directions, which play roles of n- and p-type transistors in conventional charge transistors, we propose a complementary logic device.
Buscar en Google
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
J Nanosci Nanotechnol
Año:
2015
Tipo del documento:
Article
Pais de publicación:
Estados Unidos