Your browser doesn't support javascript.
loading
Short communication: Comparison of predicted dietary phosphorus balance using bioavailabilities from the NRC (2001) and Virginia Tech model.
Feng, X; Jarrett, J P; Knowlton, K F; James, R E; Hanigan, M D.
Afiliación
  • Feng X; Department of Dairy Science, Virginia Polytechnic Institute and State University, Blacksburg 24061. Electronic address: yangxin@vt.edu.
  • Jarrett JP; Department of Dairy Science, Virginia Polytechnic Institute and State University, Blacksburg 24061.
  • Knowlton KF; Department of Dairy Science, Virginia Polytechnic Institute and State University, Blacksburg 24061.
  • James RE; Department of Dairy Science, Virginia Polytechnic Institute and State University, Blacksburg 24061.
  • Hanigan MD; Department of Dairy Science, Virginia Polytechnic Institute and State University, Blacksburg 24061.
J Dairy Sci ; 99(2): 1237-1241, 2016 Feb.
Article en En | MEDLINE | ID: mdl-26709165
The objective of the current work was to use digestion coefficients from the Feng et al. (2015) model (Virginia Tech model) to calculate P bioavailability of common feeds used in dairy production. Compared with the bioavailability calculated by the Virginia Tech model, using the NRC (2001) P absorption coefficient of 0.64 for forages would underestimate the bioavailabilities of alfalfa hay, alfalfa silage, corn silage, grass hay, and mixed mainly legume silage. For concentrates, using the NRC (2001) P absorption coefficient of 0.70 would overestimate the bioavailabilities of corn grain but underestimate bioavailability of high-moisture corn. Two dairy diets were formulated using nutrient values from the NRC (2001): a standard diet that includes minimal by-products, and a by-product diet that has reduced corn and soybean meal which was replaced with corn gluten feed, distillers grains, hominy feed, and wet brewers grains. For each diet, total bioavailable P was calculated using availability values from the NRC (2001) and the Virginia Tech model. Comparison of P balance (the difference between required and bioavailable P) for each diet was made using the 2 sets of bioavailabilities for a reference cow weighing 682 kg, producing 38.6 kg of milk/d (3.5% fat and 3.0% true protein, 100 d in milk), and consuming 23 kg of dry matter/d, yielding an absorbed P requirement of 59.4 g/d. The standard diet supplied 56.69 and 53.52 g of bioavailable P per day using bioavailabilities from the NRC (2001) and Virginia Tech models, respectively, resulting in a P balance of -2.71 and -5.88±0.26 g/d. The by-product diet provided 75.75 and 78.47 g/d of bioavailable P, yielding P balances of 16.35 and 19.07±0.37 g per day, respectively, using the 2 sets of bioavailabilities. Using P bioavailabilities for individual ingredients that were based on the Virginia Tech model resulted in different bioavailable P levels thus resulted in differing dietary P balances in a field setting.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Bovinos / Fósforo Dietético / Alimentación Animal Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Animals País/Región como asunto: America do norte Idioma: En Revista: J Dairy Sci Año: 2016 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Bovinos / Fósforo Dietético / Alimentación Animal Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Animals País/Región como asunto: America do norte Idioma: En Revista: J Dairy Sci Año: 2016 Tipo del documento: Article Pais de publicación: Estados Unidos