Your browser doesn't support javascript.
loading
Sex-specific plasticity and genotype × sex interactions for age and size of maturity in the sheepshead swordtail, Xiphophorus birchmanni.
Boulton, K; Rosenthal, G G; Grimmer, A J; Walling, C A; Wilson, A J.
Afiliación
  • Boulton K; The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK.
  • Rosenthal GG; Department of Biology, Texas A&M University, College Station, TX, USA.
  • Grimmer AJ; Centro de Investigaciones Científicas de las Huastecas 'Aguazarca', Calnali, Hidalgo, Mexico.
  • Walling CA; Centre for Ecology and Conservation, Biosciences, College of Life and Environmental Sciences, University of Exeter, Penryn, Cornwall, UK.
  • Wilson AJ; Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK.
J Evol Biol ; 29(3): 645-56, 2016 Mar.
Article en En | MEDLINE | ID: mdl-26688295
Responses to sexually antagonistic selection are thought to be constrained by the shared genetic architecture of homologous male and female traits. Accordingly, adaptive sexual dimorphism depends on mechanisms such as genotype-by-sex interaction (G×S) and sex-specific plasticity to alleviate this constraint. We tested these mechanisms in a population of Xiphophorus birchmanni (sheepshead swordtail), where the intensity of male competition is expected to mediate intersexual conflict over age and size at maturity. Combining quantitative genetics with density manipulations and analysis of sex ratio variation, we confirm that maturation traits are dimorphic and heritable, but also subject to large G×S. Although cross-sex genetic correlations are close to zero, suggesting sex-linked genes with important effects on growth and maturation are likely segregating in this population, we found less evidence of sex-specific adaptive plasticity. At high density, there was a weak trend towards later and smaller maturation in both sexes. Effects of sex ratio were stronger and putatively adaptive in males but not in females. Males delay maturation in the presence of mature rivals, resulting in larger adult size with subsequent benefit to competitive ability. However, females also delay maturation in male-biased groups, incurring a loss of reproductive lifespan without apparent benefit. Thus, in highly competitive environments, female fitness may be limited by the lack of sex-specific plasticity. More generally, assuming that selection does act antagonistically on male and female maturation traits in the wild, our results demonstrate that genetic architecture of homologous traits can ease a major constraint on the evolution of adaptive dimorphism.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Conducta Sexual Animal / Ciprinodontiformes / Modelos Genéticos Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: J Evol Biol Asunto de la revista: BIOLOGIA Año: 2016 Tipo del documento: Article Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Conducta Sexual Animal / Ciprinodontiformes / Modelos Genéticos Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: J Evol Biol Asunto de la revista: BIOLOGIA Año: 2016 Tipo del documento: Article Pais de publicación: Suiza