Your browser doesn't support javascript.
loading
Querying Co-regulated Genes on Diverse Gene Expression Datasets Via Biclustering.
Deveci, Mehmet; Küçüktunç, Onur; Eren, Kemal; Bozdag, Doruk; Kaya, Kamer; Çatalyürek, Ümit V.
Afiliación
  • Deveci M; Computer Science and Engineering, The Ohio State University, Columbus, OH, USA.
  • Küçüktunç O; Computer Science and Engineering, The Ohio State University, Columbus, OH, USA.
  • Eren K; Computer Science and Engineering, The Ohio State University, Columbus, OH, USA.
  • Bozdag D; Biomedical Informatics, The Ohio State University, Columbus, OH, USA.
  • Kaya K; Computer Science and Engineering, Sabanci University, Istanbul, Turkey.
  • Çatalyürek ÜV; Biomedical Informatics, Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH, USA. catalyurek.1@osu.edu.
Methods Mol Biol ; 1375: 55-74, 2016.
Article en En | MEDLINE | ID: mdl-26626937
Rapid development and increasing popularity of gene expression microarrays have resulted in a number of studies on the discovery of co-regulated genes. One important way of discovering such co-regulations is the query-based search since gene co-expressions may indicate a shared role in a biological process. Although there exist promising query-driven search methods adapting clustering, they fail to capture many genes that function in the same biological pathway because microarray datasets are fraught with spurious samples or samples of diverse origin, or the pathways might be regulated under only a subset of samples. On the other hand, a class of clustering algorithms known as biclustering algorithms which simultaneously cluster both the items and their features are useful while analyzing gene expression data, or any data in which items are related in only a subset of their samples. This means that genes need not be related in all samples to be clustered together. Because many genes only interact under specific circumstances, biclustering may recover the relationships that traditional clustering algorithms can easily miss. In this chapter, we briefly summarize the literature using biclustering for querying co-regulated genes. Then we present a novel biclustering approach and evaluate its performance by a thorough experimental analysis.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Análisis por Conglomerados / Biología Computacional / Perfilación de la Expresión Génica Límite: Humans Idioma: En Revista: Methods Mol Biol Asunto de la revista: BIOLOGIA MOLECULAR Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Análisis por Conglomerados / Biología Computacional / Perfilación de la Expresión Génica Límite: Humans Idioma: En Revista: Methods Mol Biol Asunto de la revista: BIOLOGIA MOLECULAR Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos