Solvation station: microsolvation for modeling vibrational sum-frequency spectra of acids at aqueous interfaces.
J Chem Theory Comput
; 11(10): 4780-90, 2015 Oct 13.
Article
en En
| MEDLINE
| ID: mdl-26574267
Vibrational sum-frequency spectra of a pair of poly(methacrylic acid) isomers at an oil/water interface and glutaric acid at an air/water interface were calculated in the carbonyl stretching region. Orientational, conformational, and solvation information was determined using classical molecular dynamics (MD), while second-order susceptibility vibrational response tensors were determined for a set of density functional theory (DFT) structures. The DFT structures were microsolvated with water molecules corresponding to the major solvation states present in the MD calculations. The inclusion of the microsolvating waters incorporates solvation effects important to the carboxylic acid stretching modes in the studied spectral region. The calculated spectra strongly agree with experimental spectra when a cutoff of 1.975 Å is used to define a hydrogen bond in the MD trajectories. With the chosen cutoff, the most common solvation state of the carboxylic acid moieties involves a single hydrogen bond to the carbonyl oxygen and a single hydrogen bond to the carboxylic acid hydrogen. The sensitivity of the spectra to the hydrogen bond cutoff definition and the included DFT structures was investigated. Moderate changes in the relative intensities of the contributing peaks were found in both cases. Shortening the hydrogen bond cutoff definition predictably leads to a decrease in the relative intensity of peaks corresponding to well-solvated structures, while altering the set of DFT solvation structures results in more complex behavior that is dependent on the specific structures included.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Tipo de estudio:
Prognostic_studies
Idioma:
En
Revista:
J Chem Theory Comput
Año:
2015
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Estados Unidos