Your browser doesn't support javascript.
loading
Additive manufacturing of scaffolds with dexamethasone controlled release for enhanced bone regeneration.
Costa, Pedro F; Puga, Ana M; Díaz-Gomez, Luis; Concheiro, Angel; Busch, Dirk H; Alvarez-Lorenzo, Carmen.
Afiliación
  • Costa PF; Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich, Trogerstr. 30, 81675 Munich, Germany. Electronic address: p.ferreiradacosta@umcutrecht.nl.
  • Puga AM; Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
  • Díaz-Gomez L; Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
  • Concheiro A; Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
  • Busch DH; Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich, Trogerstr. 30, 81675 Munich, Germany.
  • Alvarez-Lorenzo C; Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
Int J Pharm ; 496(2): 541-50, 2015 Dec 30.
Article en En | MEDLINE | ID: mdl-26520408
The adoption of additive manufacturing in tissue engineering and regenerative medicine (TERM) strategies greatly relies on the development of novel 3D printable materials with advanced properties. In this work we have developed a material for bone TERM applications with tunable bioerosion rate and dexamethasone release profile which can be further employed in fused deposition modelling (the most common and accessible 3D printing technology in the market). The developed material consisted of a blend of poly-ϵ-caprolactone (PCL) and poloxamine (Tetronic®) and was processed into a ready-to-use filament form by means of a simplified melt-based methodology, therefore eliminating the utilization of solvents. 3D scaffolds composed of various blend formulations were additively manufactured and analyzed revealing blend ratio-specific degradation rates and dexamethasone release profiles. Furthermore, in vitro culture studies revealed a similar blend ratio-specific trend concerning the osteoinductive activity of the fabricated scaffolds when these were seeded and cultured with human mesenchymal stem cells. The developed material enables to specifically address different regenerative requirements found in various tissue defects. The versatility of such strategy is further increased by the ability of additive manufacturing to accurately fabricate implants matching any given defect geometry.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Regeneración Ósea / Dexametasona / Andamios del Tejido Límite: Humans Idioma: En Revista: Int J Pharm Año: 2015 Tipo del documento: Article Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Regeneración Ósea / Dexametasona / Andamios del Tejido Límite: Humans Idioma: En Revista: Int J Pharm Año: 2015 Tipo del documento: Article Pais de publicación: Países Bajos