Your browser doesn't support javascript.
loading
Predicting potential ranges of primary malaria vectors and malaria in northern South America based on projected changes in climate, land cover and human population.
Alimi, Temitope O; Fuller, Douglas O; Qualls, Whitney A; Herrera, Socrates V; Arevalo-Herrera, Myriam; Quinones, Martha L; Lacerda, Marcus V G; Beier, John C.
Afiliación
  • Alimi TO; Abess Center for Ecosystem Science and Policy, University of Miami, Coral Gables, Florida, USA. t.alimi@umiami.edu.
  • Fuller DO; Department of Geography and Regional Studies, University of Miami, Coral Gables, Florida, USA. dofuller@miami.edu.
  • Qualls WA; Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, Florida, USA. w.qualls@med.miami.edu.
  • Herrera SV; Centro de Investigación Científica Caucaseco, Cali, Colombia. sherrera@inmuno.org.
  • Arevalo-Herrera M; School of Health, Valle State University, Cali, Colombia. sherrera@inmuno.org.
  • Quinones ML; Centro de Investigación Científica Caucaseco, Cali, Colombia. marevalo@inmuno.org.
  • Lacerda MV; School of Health, Valle State University, Cali, Colombia. marevalo@inmuno.org.
  • Beier JC; Department of Public Health, Universidad Nacional de Colombia, Bogota, Colombia. marthalquinones@gmail.com.
Parasit Vectors ; 8: 431, 2015 Aug 20.
Article en En | MEDLINE | ID: mdl-26289677
BACKGROUND: Changes in land use and land cover (LULC) as well as climate are likely to affect the geographic distribution of malaria vectors and parasites in the coming decades. At present, malaria transmission is concentrated mainly in the Amazon basin where extensive agriculture, mining, and logging activities have resulted in changes to local and regional hydrology, massive loss of forest cover, and increased contact between malaria vectors and hosts. METHODS: Employing presence-only records, bioclimatic, topographic, hydrologic, LULC and human population data, we modeled the distribution of malaria and two of its dominant vectors, Anopheles darlingi, and Anopheles nuneztovari s.l. in northern South America using the species distribution modeling platform Maxent. RESULTS: Results from our land change modeling indicate that about 70,000 km(2) of forest land would be lost by 2050 and 78,000 km(2) by 2070 compared to 2010. The Maxent model predicted zones of relatively high habitat suitability for malaria and the vectors mainly within the Amazon and along coastlines. While areas with malaria are expected to decrease in line with current downward trends, both vectors are predicted to experience range expansions in the future. Elevation, annual precipitation and temperature were influential in all models both current and future. Human population mostly affected An. darlingi distribution while LULC changes influenced An. nuneztovari s.l. distribution. CONCLUSION: As the region tackles the challenge of malaria elimination, investigations such as this could be useful for planning and management purposes and aid in predicting and addressing potential impediments to elimination.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Cambio Climático / Crecimiento Demográfico / Agricultura / Insectos Vectores / Malaria Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Animals / Humans País/Región como asunto: America do sul Idioma: En Revista: Parasit Vectors Año: 2015 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Cambio Climático / Crecimiento Demográfico / Agricultura / Insectos Vectores / Malaria Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Animals / Humans País/Región como asunto: America do sul Idioma: En Revista: Parasit Vectors Año: 2015 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido