Your browser doesn't support javascript.
loading
Distributed Bayesian Computation and Self-Organized Learning in Sheets of Spiking Neurons with Local Lateral Inhibition.
Bill, Johannes; Buesing, Lars; Habenschuss, Stefan; Nessler, Bernhard; Maass, Wolfgang; Legenstein, Robert.
Afiliación
  • Bill J; Institute for Theoretical Computer Science, TU Graz, Graz, Austria.
  • Buesing L; Department of Statistics, Columbia University, New York, New York, United States of America.
  • Habenschuss S; Institute for Theoretical Computer Science, TU Graz, Graz, Austria.
  • Nessler B; Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany.
  • Maass W; Institute for Theoretical Computer Science, TU Graz, Graz, Austria.
  • Legenstein R; Institute for Theoretical Computer Science, TU Graz, Graz, Austria.
PLoS One ; 10(8): e0134356, 2015.
Article en En | MEDLINE | ID: mdl-26284370
During the last decade, Bayesian probability theory has emerged as a framework in cognitive science and neuroscience for describing perception, reasoning and learning of mammals. However, our understanding of how probabilistic computations could be organized in the brain, and how the observed connectivity structure of cortical microcircuits supports these calculations, is rudimentary at best. In this study, we investigate statistical inference and self-organized learning in a spatially extended spiking network model, that accommodates both local competitive and large-scale associative aspects of neural information processing, under a unified Bayesian account. Specifically, we show how the spiking dynamics of a recurrent network with lateral excitation and local inhibition in response to distributed spiking input, can be understood as sampling from a variational posterior distribution of a well-defined implicit probabilistic model. This interpretation further permits a rigorous analytical treatment of experience-dependent plasticity on the network level. Using machine learning theory, we derive update rules for neuron and synapse parameters which equate with Hebbian synaptic and homeostatic intrinsic plasticity rules in a neural implementation. In computer simulations, we demonstrate that the interplay of these plasticity rules leads to the emergence of probabilistic local experts that form distributed assemblies of similarly tuned cells communicating through lateral excitatory connections. The resulting sparse distributed spike code of a well-adapted network carries compressed information on salient input features combined with prior experience on correlations among them. Our theory predicts that the emergence of such efficient representations benefits from network architectures in which the range of local inhibition matches the spatial extent of pyramidal cells that share common afferent input.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Simulación por Computador / Aprendizaje / Modelos Neurológicos / Red Nerviosa / Neuronas Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2015 Tipo del documento: Article País de afiliación: Austria Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Simulación por Computador / Aprendizaje / Modelos Neurológicos / Red Nerviosa / Neuronas Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2015 Tipo del documento: Article País de afiliación: Austria Pais de publicación: Estados Unidos