Classification of Contextual Use of Left Ventricular Ejection Fraction Assessments.
Stud Health Technol Inform
; 216: 599-603, 2015.
Article
en En
| MEDLINE
| ID: mdl-26262121
Knowledge of the left ventricular ejection fraction is critical for the optimal care of patients with heart failure. When a document contains multiple ejection fraction assessments, accurate classification of their contextual use is necessary to filter out historical findings or recommendations and prioritize the assessments for selection of document level ejection fraction information. We present a natural language processing system that classifies the contextual use of both quantitative and qualitative left ventricular ejection fraction assessments in clinical narrative documents. We created support vector machine classifiers with a variety of features extracted from the target assessment, associated concepts, and document section information. The experimental results showed that our classifiers achieved good performance, reaching 95.6% F1-measure for quantitative assessments and 94.2% F1-measure for qualitative assessments in a five-fold cross-validation evaluation.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Volumen Sistólico
/
Procesamiento de Lenguaje Natural
/
Diagnóstico por Computador
/
Sistemas de Apoyo a Decisiones Clínicas
/
Registros Electrónicos de Salud
/
Insuficiencia Cardíaca
Tipo de estudio:
Diagnostic_studies
/
Guideline
/
Prognostic_studies
/
Qualitative_research
Límite:
Humans
Idioma:
En
Revista:
Stud Health Technol Inform
Asunto de la revista:
INFORMATICA MEDICA
/
PESQUISA EM SERVICOS DE SAUDE
Año:
2015
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Países Bajos