Single cell resolution in vivo imaging of DNA damage following PARP inhibition.
Sci Rep
; 5: 10129, 2015 May 18.
Article
en En
| MEDLINE
| ID: mdl-25984718
Targeting DNA repair pathways is a powerful strategy to treat cancers. To gauge efficacy in vivo, typical response markers include late stage effects such as tumor shrinkage, progression free survival, or invasive repeat biopsies. These approaches are often difficult to answer critical questions such as how a given drug affects single cell populations as a function of dose and time, distance from microvessels or how drug concentration (pharmacokinetics) correlates with DNA damage (pharmacodynamics). Here, we established a single-cell in vivo pharmacodynamic imaging read-out based on a truncated 53BP1 double-strand break reporter to determine whether or not poly(ADP-ribose) polymerase (PARP) inhibitor treatment leads to accumulation of DNA damage. Using this reporter, we show that not all PARP inhibitor treated tumors incur an increase in DNA damage. The method provides a framework for single cell analysis of cancer therapeutics in vivo.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Daño del ADN
/
Poli(ADP-Ribosa) Polimerasas
/
Imagen Molecular
/
Inhibidores de Poli(ADP-Ribosa) Polimerasas
Límite:
Animals
/
Humans
Idioma:
En
Revista:
Sci Rep
Año:
2015
Tipo del documento:
Article
Pais de publicación:
Reino Unido