Granular segregation driven by particle interactions.
Phys Rev Lett
; 114(17): 178002, 2015 May 01.
Article
en En
| MEDLINE
| ID: mdl-25978265
We report the results of an experimental study of particle-particle interactions in a horizontally shaken granular layer that undergoes a second order phase transition from a binary gas to a segregation liquid as the packing fraction C is increased. By focusing on the behavior of individual particles, the effect of C is studied on (1) the process of cluster formation, (2) cluster dynamics, and (3) cluster destruction. The outcomes indicate that the segregation is driven by two mechanisms: attraction between particles with the same properties and random motion with a characteristic length that is inversely proportional to C. All clusters investigated are found to be transient and the probability distribution functions of the separation times display a power law tail, indicating that the splitting probability decreases with time.
Buscar en Google
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Phys Rev Lett
Año:
2015
Tipo del documento:
Article
País de afiliación:
España
Pais de publicación:
Estados Unidos