Flexible, Hybrid Piezoelectric Film (BaTi(1-x)Zr(x)O3)/PVDF Nanogenerator as a Self-Powered Fluid Velocity Sensor.
ACS Appl Mater Interfaces
; 7(18): 9831-40, 2015 May 13.
Article
en En
| MEDLINE
| ID: mdl-25901640
We demonstrate a flexible piezoelectric nanogenerator (PNG) constructed using a hybrid (or composite) film composed of highly crystalline BaTi(1-x)Zr(x)O3 (x = 0, 0.05, 0.1, 0.15, and 0.2) nanocubes (abbreviated as BTZO) synthesized using a molten-salt process embedded into a poly(vinylidene fluoride) (PVDF) matrix solution via ultrasonication. The potential of a BTZO/PVDF hybrid film is realized in fabricating eco-friendly devices, active sensors, and flexible nanogenerators to interpret its functionality. Our strategy is based on the incorporation of various Zr(4+) doping ratios into the Ti(4+) site of BaTiO3 nanocubes to enhance the performance of the PNG. The flexible nanogenerator (BTZO/PVDF) exhibits a high electrical output up to â¼11.9 V and â¼1.35 µA compared to the nanogenerator (BTO/PVDF) output of 7.99 V and 1.01 µA upon the application of cyclic pushing-releasing frequencies with a constant load (11 N). We also demonstrate another exciting application of the PNG as a self-powered sensor to measure different water velocities at an outlet pipe. The average maximum peak power of the PNG varies from 0.2 to 15.8 nW for water velocities ranging from 31.43 to 125.7 m/s during the water ON condition. This study shows the compositional dependence approach, fabrication of nanostructures for energy harvesting, and self-powered devices in the field of monitoring for remote area applications.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
ACS Appl Mater Interfaces
Asunto de la revista:
BIOTECNOLOGIA
/
ENGENHARIA BIOMEDICA
Año:
2015
Tipo del documento:
Article
Pais de publicación:
Estados Unidos