Your browser doesn't support javascript.
loading
Reprogramming mediated radio-resistance of 3D-grown cancer cells.
Xue, Gang; Ren, Zhenxin; Grabham, Peter W; Chen, Yaxiong; Zhu, Jiayun; Du, Yarong; Pan, Dong; Li, Xiaoman; Hu, Burong.
Afiliación
  • Xue G; Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Building 5-204, Lanzhou 730000, China University of Chinese Academy of Sciences, Beijing, 100049, China.
  • Ren Z; Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Building 5-204, Lanzhou 730000, China.
  • Grabham PW; Center for Radiological Research, College of Physicians and Surgeons, Columbia University, New York, 10032.
  • Chen Y; Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Building 5-204, Lanzhou 730000, China.
  • Zhu J; Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Building 5-204, Lanzhou 730000, China.
  • Du Y; Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Building 5-204, Lanzhou 730000, China.
  • Pan D; Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Building 5-204, Lanzhou 730000, China University of Chinese Academy of Sciences, Beijing, 100049, China.
  • Li X; Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Building 5-204, Lanzhou 730000, China University of Chinese Academy of Sciences, Beijing, 100049, China.
  • Hu B; Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Building 5-204, Lanzhou 730000, China hubr@impcas.ac.cn.
J Radiat Res ; 56(4): 656-62, 2015 Jul.
Article en En | MEDLINE | ID: mdl-25883172
In vitro 3D growth of tumors is a new cell culture model that more closely mimics the features of the in vivo environment and is being used increasingly in the field of biological and medical research. It has been demonstrated that cancer cells cultured in 3D matrices are more radio-resistant compared with cells in monolayers. However, the mechanisms causing this difference remain unclear. Here we show that cancer cells cultured in a 3D microenvironment demonstrated an increase in cells with stem cell properties. This was confirmed by the finding that cells in 3D cultures upregulated the gene and protein expression of the stem cell reprogramming factors such as OCT4, SOX2, NANOG, LIN28 and miR-302a, compared with cells in monolayers. Moreover, the expression of ß-catenin, a regulating molecule of reprogramming factors, also increased in 3D-grown cancer cells. These findings suggest that cancer cells were reprogrammed to become stem cell-like cancer cells in a 3D growth culture microenvironment. Since cancer stem cell-like cells demonstrate an increased radio-resistance and chemo-resistance, our results offer a new perspective as to why. Our findings shed new light on understanding the features of the 3D growth cell model and its application in basic research into clinical radiotherapy and medicine.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Tolerancia a Radiación / Células Madre Neoplásicas / Supervivencia Celular / Técnicas de Reprogramación Celular / Neoplasias Pulmonares Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: J Radiat Res Año: 2015 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Tolerancia a Radiación / Células Madre Neoplásicas / Supervivencia Celular / Técnicas de Reprogramación Celular / Neoplasias Pulmonares Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: J Radiat Res Año: 2015 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido