Your browser doesn't support javascript.
loading
Formation and decay of the arrestin·rhodopsin complex in native disc membranes.
Beyrière, Florent; Sommer, Martha E; Szczepek, Michal; Bartl, Franz J; Hofmann, Klaus Peter; Heck, Martin; Ritter, Eglof.
Afiliación
  • Beyrière F; From the Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany and.
  • Sommer ME; From the Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany and.
  • Szczepek M; From the Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany and.
  • Bartl FJ; From the Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany and Zentrum für Biophysik und Bioinformatik (BPI) and.
  • Hofmann KP; From the Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany and Zentrum für Biophysik und Bioinformatik (BPI) and.
  • Heck M; From the Institut für Medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany and.
  • Ritter E; Institut für Biologie, Experimentelle Biophysik, Humboldt-Universität zu Berlin, 10115 Berlin, Germany eglof.ritter@hu-berlin.de.
J Biol Chem ; 290(20): 12919-28, 2015 May 15.
Article en En | MEDLINE | ID: mdl-25847250
In the G protein-coupled receptor rhodopsin, light-induced cis/trans isomerization of the retinal ligand triggers a series of distinct receptor states culminating in the active Metarhodopsin II (Meta II) state, which binds and activates the G protein transducin (Gt). Long before Meta II decays into the aporeceptor opsin and free all-trans-retinal, its signaling is quenched by receptor phosphorylation and binding of the protein arrestin-1, which blocks further access of Gt to Meta II. Although recent crystal structures of arrestin indicate how it might look in a precomplex with the phosphorylated receptor, the transition into the high affinity complex is not understood. Here we applied Fourier transform infrared spectroscopy to monitor the interaction of arrestin-1 and phosphorylated rhodopsin in native disc membranes. By isolating the unique infrared signature of arrestin binding, we directly observed the structural alterations in both reaction partners. In the high affinity complex, rhodopsin adopts a structure similar to Gt-bound Meta II. In arrestin, a modest loss of ß-sheet structure indicates an increase in flexibility but is inconsistent with a large scale structural change. During Meta II decay, the arrestin-rhodopsin stoichiometry shifts from 1:1 to 1:2. Arrestin stabilizes half of the receptor population in a specific Meta II protein conformation, whereas the other half decays to inactive opsin. Altogether these results illustrate the distinct binding modes used by arrestin to interact with different functional forms of the receptor.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Rodopsina / Membrana Celular / Arrestina / Complejos Multiproteicos Límite: Animals Idioma: En Revista: J Biol Chem Año: 2015 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Rodopsina / Membrana Celular / Arrestina / Complejos Multiproteicos Límite: Animals Idioma: En Revista: J Biol Chem Año: 2015 Tipo del documento: Article Pais de publicación: Estados Unidos