Your browser doesn't support javascript.
loading
Short communication: Evaluation of the microbiota of kefir samples using metagenetic analysis targeting the 16S and 26S ribosomal DNA fragments.
Korsak, N; Taminiau, B; Leclercq, M; Nezer, C; Crevecoeur, S; Ferauche, C; Detry, E; Delcenserie, V; Daube, G.
Afiliación
  • Korsak N; Fundamental and Applied Research for Animal & Health (FARAH), Food Science Department, Faculty of Veterinary Medicine, University of Liège, Sart-Tilman, B43b Liège, B-4000 Belgium. Electronic address: nkorsak@ulg.ac.be.
  • Taminiau B; Fundamental and Applied Research for Animal & Health (FARAH), Food Science Department, Faculty of Veterinary Medicine, University of Liège, Sart-Tilman, B43b Liège, B-4000 Belgium.
  • Leclercq M; Fundamental and Applied Research for Animal & Health (FARAH), Food Science Department, Faculty of Veterinary Medicine, University of Liège, Sart-Tilman, B43b Liège, B-4000 Belgium.
  • Nezer C; Quality Partner S.A., Rue Hayeneux, 62 4040 Herstal, Belgium.
  • Crevecoeur S; Fundamental and Applied Research for Animal & Health (FARAH), Food Science Department, Faculty of Veterinary Medicine, University of Liège, Sart-Tilman, B43b Liège, B-4000 Belgium.
  • Ferauche C; Quality Partner S.A., Rue Hayeneux, 62 4040 Herstal, Belgium.
  • Detry E; Quality Partner S.A., Rue Hayeneux, 62 4040 Herstal, Belgium.
  • Delcenserie V; Fundamental and Applied Research for Animal & Health (FARAH), Food Science Department, Faculty of Veterinary Medicine, University of Liège, Sart-Tilman, B43b Liège, B-4000 Belgium.
  • Daube G; Fundamental and Applied Research for Animal & Health (FARAH), Food Science Department, Faculty of Veterinary Medicine, University of Liège, Sart-Tilman, B43b Liège, B-4000 Belgium.
J Dairy Sci ; 98(6): 3684-9, 2015 Jun.
Article en En | MEDLINE | ID: mdl-25828663
Milk kefir is produced by fermenting milk in the presence of kefir grains. This beverage has several benefits for human health. The aim of this experiment was to analyze 5 kefir grains (and their products) using a targeted metagenetic approach. Of the 5 kefir grains analyzed, 1 was purchased in a supermarket, 2 were provided by the Ministry of Agriculture (Namur, Belgium), and 2 were provided by individuals. The metagenetic approach targeted the V1-V3 fragment of the 16S ribosomal (r)DNA for the grains and the resulting beverages at 2 levels of grain incorporation (5 and 10%) to identify the bacterial species population. In contrast, the 26S rDNA pyrosequencing was performed only on kefir grains with the aim of assessing the yeast populations. In parallel, pH measurements were performed on the kefir obtained from the kefir grains using 2 incorporation rates. Regarding the bacterial population, 16S pyrosequencing revealed the presence of 20 main bacterial species, with a dominance of the following: Lactobacillus kefiranofaciens, Lactococcus lactis ssp. cremoris, Gluconobacter frateurii, Lactobacillus kefiri, Acetobacter orientalis, and Acetobacter lovaniensis. An important difference was noticed between the kefir samples: kefir grain purchased from a supermarket (sample E) harbored a much higher proportion of several operational taxonomic units of Lactococcus lactis and Leuconostoc mesenteroides. This sample of grain was macroscopically different from the others in terms of size, apparent cohesion of the grains, structure, and texture, probably associated with a lower level of Lactobacillus kefiranofaciens. The kefir (at an incorporation rate of 5%) produced from this sample of grain was characterized by a lower pH value (4.5) than the others. The other 4 samples of kefir (5%) had pH values above 5. Comparing the kefir grain and the kefir, an increase in the population of Gluconobacter in grain sample B was observed. This was also the case for Acetobacter orientalis in sample D. In relation to 26S pyrosequencing, our study revealed the presence of 3 main yeast species: Naumovozyma spp., Kluyveromyces marxianus, and Kazachastania khefir. For Naumovozyma, further studies are needed to assess the isolation of new species. In conclusion, this study has proved that it is possible to establish the patterns of bacterial and yeast composition of kefir and kefir grain. This was only achieved with the use of high-throughput sequencing techniques.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Bacterias / ADN Bacteriano / ADN Ribosómico / Productos Lácteos Cultivados / Microbiología de Alimentos Límite: Animals Idioma: En Revista: J Dairy Sci Año: 2015 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Bacterias / ADN Bacteriano / ADN Ribosómico / Productos Lácteos Cultivados / Microbiología de Alimentos Límite: Animals Idioma: En Revista: J Dairy Sci Año: 2015 Tipo del documento: Article Pais de publicación: Estados Unidos