Brownian motion of optically anisotropic spherical particles in polymeric suspensions.
Eur Phys J E Soft Matter
; 38(1): 3, 2015 Jan.
Article
en En
| MEDLINE
| ID: mdl-25618614
We studied the rotational and translational diffusion of optically anisotropic liquid crystal particles embedded in semidiluted polymer solutions of Poly-Ethylene-Oxide (PEO) at different concentrations and different molecular weights. The polymer radius of gyration was chosen to be similar to the size of the probe particles and the polymer concentrations used are just above the crossover concentration. Thus, the system consists of solid probe particles moving in a sea of overlapping particles of similar size. We found that the behavior of both particle dynamics, rotational and translational, is similar in the range of concentrations considered here. In both cases, two linear diffusive regimes are observed, separated by a subdiffusive time interval. The spatial scale at which this intermediate regime appears shows a dependence on both the polymer concentration and molecular weight, and has a value similar to the thickness of the polymer-depleted layer usually found in this kind of systems. Additionally, we observe that the colloidal dynamic scales with the overlapping degree of the polymer particles.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Eur Phys J E Soft Matter
Asunto de la revista:
BIOFISICA
Año:
2015
Tipo del documento:
Article
Pais de publicación:
Francia