Multispectral elastic scanning lidar for industrial flare research: characterizing the electronic subsystem and application.
Opt Express
; 22(25): 31063-77, 2014 Dec 15.
Article
en En
| MEDLINE
| ID: mdl-25607056
This work deals with the analysis of the electronic subsystem of a multiwavelength elastic scanning lidar. Several calibration tests are applied to the Cubatão scanning lidar placed at the industrial area of Cubatão in the State of São Paulo (Brazil), in order to improve the knowledge of its performing itself and to design protocols for correcting lidar signal for undesirable instrumental effects. In particular, the trigger delay is assessed by means of zero-bin and bin-shift tests for analog (AN) and photo-counting (PC) signals, respectively. Dark current test is also performed to detect potential range-dependency that could affect lidar products. All tests were performed at different spatial resolutions. These instrumental corrections were applied to a case study of data acquired for characterizing the optical and microphysical properties of particles in an industrial flare. To that aim, a graphical method based on the space defined by the extinction-related Angström exponent versus its spectral curvature is used to derive the contribution of fine aerosol to extinction and the size of the fine aerosols in the industrial flare, therefore revealing features of the processes occurring inside the flame. Our study demonstrates the potential of this new technique for the study and measurement of industrial emissions.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Opt Express
Asunto de la revista:
OFTALMOLOGIA
Año:
2014
Tipo del documento:
Article
Pais de publicación:
Estados Unidos