Naturally occurring heavy radioactive elements in the geothermal microcosm of the Los Azufres (Mexico) volcanic complex.
J Environ Radioact
; 139: 33-42, 2015 Jan.
Article
en En
| MEDLINE
| ID: mdl-25464039
The Los Azufres geothermal complex of central Mexico is characterized by fumaroles and boiling hot-springs. The fumaroles form habitats for extremophilic mosses and ferns. Physico-chemical measurements of two relatively pristine fumarolic microcosms point to their resemblance with the paleo-environment of earth during the Ordovician and Devonian periods. These geothermal habitats were analysed for the distribution of elemental mass fractions in the rhizospheric soil (RS), the native volcanic substrate (VS) and the sediments (S), using the new high-sensitivity technique of polarized x-ray energy dispersive fluorescence spectrometry (PEDXRF) as well as instrumental neutron activation analysis (INAA) for selected elements. This work presents the results for the naturally occurring heavy radioactive elements (NOHRE) Bi, Th and U but principally the latter two. For the RS, the density was found to be the least and the total organic matter content the most. Bi was found to be negligibly present in all substrate types. The average Th and U mass fractions in the RS were higher than in the VS and about equal to their average mass fractions in the S. The VS mass fraction of Th was higher, and of U lower, than the mass fractions in the earth's crust. In fact for the fumaroles of one site, the average RS mass fractions of these elements were higher than the averaged values for S (without considering the statistical dispersion). The immobilization of the NOHRE in the RS is brought about by the bio-geochemical processes specific to these extremophiles. Its effectiveness is such that despite the small masses of these plants, it compares with, or may sometimes exceed, the immobilization of the NOHRE in the S by the abiotic and aggressive chemical action of the hot-springs. These results indicate that the fumarolic plants are able to transform the volcanic substrate to soil and to affect the NOHRE mass fractions even though these elements are not plant nutrients. Mirrored back to the paleo times when such plant types were ubiquitous, it would mean that the first plants contributed significantly to pedogenesis and the biogeochemical recycling of even the heaviest and radioactive elements. Such plants may potentially be useful for the phytostabilisation of soil moderately contaminated by the NOHRE. Furthermore where applicable, geochronology may require taking into account the influence of the early plants on the NOHRE distributions.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Elementos Radiactivos
País/Región como asunto:
Mexico
Idioma:
En
Revista:
J Environ Radioact
Asunto de la revista:
SAUDE AMBIENTAL
Año:
2015
Tipo del documento:
Article
Pais de publicación:
Reino Unido