Your browser doesn't support javascript.
loading
Functional connectivity dynamics: modeling the switching behavior of the resting state.
Hansen, Enrique C A; Battaglia, Demian; Spiegler, Andreas; Deco, Gustavo; Jirsa, Viktor K.
Afiliación
  • Hansen EC; Université Aix-Marseille, INSERM UMR 1106, Institut de Neurosciences des Systèmes, 27Bd Jean Moulin, 13005 Marseille, France. Electronic address: enrique-carlos.hansen@etu.univ-amu.fr.
  • Battaglia D; Université Aix-Marseille, INSERM UMR 1106, Institut de Neurosciences des Systèmes, 27Bd Jean Moulin, 13005 Marseille, France; Bernstein Center for Computational Neuroscience, Am Faßberg 17, 37077 Göttingen, Germany. Electronic address: demian.battaglia@univ-amu.fr.
  • Spiegler A; Université Aix-Marseille, INSERM UMR 1106, Institut de Neurosciences des Systèmes, 27Bd Jean Moulin, 13005 Marseille, France. Electronic address: andreas.spiegler@univ-amu.fr.
  • Deco G; Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain. Electronic address: gustavo.deco@upf.edu.
  • Jirsa VK; Université Aix-Marseille, INSERM UMR 1106, Institut de Neurosciences des Systèmes, 27Bd Jean Moulin, 13005 Marseille, France. Electronic address: viktor.jirsa@univ-amu.fr.
Neuroimage ; 105: 525-35, 2015 Jan 15.
Article en En | MEDLINE | ID: mdl-25462790
Functional connectivity (FC) sheds light on the interactions between different brain regions. Besides basic research, it is clinically relevant for applications in Alzheimer's disease, schizophrenia, presurgical planning, epilepsy, and traumatic brain injury. Simulations of whole-brain mean-field computational models with realistic connectivity determined by tractography studies enable us to reproduce with accuracy aspects of average FC in the resting state. Most computational studies, however, did not address the prominent non-stationarity in resting state FC, which may result in large intra- and inter-subject variability and thus preclude an accurate individual predictability. Here we show that this non-stationarity reveals a rich structure, characterized by rapid transitions switching between a few discrete FC states. We also show that computational models optimized to fit time-averaged FC do not reproduce these spontaneous state transitions and, thus, are not qualitatively superior to simplified linear stochastic models, which account for the effects of structure alone. We then demonstrate that a slight enhancement of the non-linearity of the network nodes is sufficient to broaden the repertoire of possible network behaviors, leading to modes of fluctuations, reminiscent of some of the most frequently observed Resting State Networks. Because of the noise-driven exploration of this repertoire, the dynamics of FC qualitatively change now and display non-stationary switching similar to empirical resting state recordings (Functional Connectivity Dynamics (FCD)). Thus FCD bear promise to serve as a better biomarker of resting state neural activity and of its pathologic alterations.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Encéfalo / Modelos Teóricos / Red Nerviosa Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Neuroimage Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2015 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Encéfalo / Modelos Teóricos / Red Nerviosa Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Neuroimage Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2015 Tipo del documento: Article Pais de publicación: Estados Unidos