Your browser doesn't support javascript.
loading
Gigaseal mechanics: creep of the gigaseal under the action of pressure, adhesion, and voltage.
Slavchov, Radomir I; Nomura, Takeshi; Martinac, Boris; Sokabe, Masahiro; Sachs, Frederick.
Afiliación
  • Slavchov RI; Sofia University , Department of Physical Chemistry, 1 J. Bourchier Blvd., Sofia 1164, Bulgaria.
J Phys Chem B ; 118(44): 12660-72, 2014 Nov 06.
Article en En | MEDLINE | ID: mdl-25295693
Patch clamping depends on a tight seal between the cell membrane and the glass of the pipet. Why does the seal have such high electric resistance? Why does the patch adhere so strongly to the glass? Even under the action of strong hydrostatic, adhesion, and electrical forces, it creeps at a very low velocity. To explore possible explanations, we examined two physical models for the structure of the seal zone and the adhesion forces and two respective mechanisms of patch creep and electric conductivity. There is saline between the membrane and glass in the seal, and the flow of this solution under hydrostatic pressure or electroosmosis should drag a patch. There is a second possibility: the lipid core of the membrane is liquid and should be able to flow, with the inner monolayer slipping over the outer one. Both mechanisms predict the creep velocity as a function of the properties of the seal and the membrane, the pipet geometry, and the driving force. These model predictions are compared with experimental data for azolectin liposomes with added cholesterol or proteins. It turns out that to obtain experimentally observed creep velocities, a simple viscous flow in the seal zone requires ~10 Pa·s viscosity; it is unclear what structure might provide that because that viscosity alone severely constrains the electric resistance of the gigaseal. Possibly, it is the fluid bilayer that allows the motion. The two models provide an estimate of the adhesion energy of the membrane to the glass and membrane's electric characteristics through the comparison between the velocities of pressure-, adhesion-, and voltage-driven creep.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fosfatidilcolinas / Colesterol / Técnicas de Placa-Clamp / Proteínas de Escherichia coli / Canales Iónicos / Liposomas Tipo de estudio: Prognostic_studies Idioma: En Revista: J Phys Chem B Asunto de la revista: QUIMICA Año: 2014 Tipo del documento: Article País de afiliación: Bulgaria Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fosfatidilcolinas / Colesterol / Técnicas de Placa-Clamp / Proteínas de Escherichia coli / Canales Iónicos / Liposomas Tipo de estudio: Prognostic_studies Idioma: En Revista: J Phys Chem B Asunto de la revista: QUIMICA Año: 2014 Tipo del documento: Article País de afiliación: Bulgaria Pais de publicación: Estados Unidos