Your browser doesn't support javascript.
loading
Demand-Driven Clustering in Relational Domains for Predicting Adverse Drug Events.
Davis, Jesse; Costa, Vítor Santos; Peissig, Peggy; Caldwell, Michael; Berg, Elizabeth; Page, David.
Afiliación
  • Davis J; KU Leuven, Celestijnenlaan 200a, Heverlee 3001, Belgium.
  • Costa VS; CRACS INESC-TEC and FCUP Universidade do Porto, Rua do Campo Alegre, 4169-007 PORTO, Portugal.
  • Peissig P; Marshfield Clinic, 1000 N Oak Ave, Marshfield, WI 54449 USA.
  • Caldwell M; Marshfield Clinic, 1000 N Oak Ave, Marshfield, WI 54449 USA.
  • Berg E; University of Wisconsin - Madison, 1300 University Avenue, Madison, WI 53706 USA.
  • Page D; University of Wisconsin - Madison, 1300 University Avenue, Madison, WI 53706 USA.
Proc Int Conf Mach Learn ; 2012: 1287-1294, 2012.
Article en En | MEDLINE | ID: mdl-25285329
Learning from electronic medical records (EMR) is challenging due to their relational nature and the uncertain dependence between a patient's past and future health status. Statistical relational learning is a natural fit for analyzing EMRs but is less adept at handling their inherent latent structure, such as connections between related medications or diseases. One way to capture the latent structure is via a relational clustering of objects. We propose a novel approach that, instead of pre-clustering the objects, performs a demand-driven clustering during learning. We evaluate our algorithm on three real-world tasks where the goal is to use EMRs to predict whether a patient will have an adverse reaction to a medication. We find that our approach is more accurate than performing no clustering, pre-clustering, and using expert-constructed medical heterarchies.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Aspecto: Patient_preference Idioma: En Revista: Proc Int Conf Mach Learn Año: 2012 Tipo del documento: Article País de afiliación: Bélgica Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Aspecto: Patient_preference Idioma: En Revista: Proc Int Conf Mach Learn Año: 2012 Tipo del documento: Article País de afiliación: Bélgica Pais de publicación: Estados Unidos