Arrhythmogenic right ventricular cardiomyopathy mutations alter shear response without changes in cell-cell adhesion.
Cardiovasc Res
; 104(2): 280-9, 2014 Nov 01.
Article
en En
| MEDLINE
| ID: mdl-25253076
AIMS: The majority of patients diagnosed with arrhythmogenic right ventricular cardiomyopathy (ARVC) have mutations in genes encoding desmosomal proteins, raising the possibility that abnormal intercellular adhesion plays an important role in disease pathogenesis. We characterize cell mechanical properties and molecular responses to oscillatory shear stress in cardiac myocytes expressing mutant forms of the desmosomal proteins, plakoglobin and plakophilin, which are linked to ARVC in patients. METHODS AND RESULTS: Cells expressing mutant plakoglobin or plakophilin showed no differences in cell-cell adhesion relative to controls, while knocking down these proteins weakened cell-cell adhesion. However, cells expressing mutant plakoglobin failed to increase the amount of immunoreactive signal for plakoglobin or N-cadherin at cell-cell junctions in response to shear stress, as seen in control cells. Cells expressing mutant plakophilin exhibited a similar attenuation in the shear-induced increase in junctional plakoglobin immunoreactive signal in response to shear stress, suggesting that the phenotype is independent of the type of mutant protein being expressed. Cells expressing mutant plakoglobin also showed greater myocyte apoptosis compared with controls. Apoptosis rates increased greatly in response to shear stress in cells expressing mutant plakoglobin, but not in controls. Abnormal responses to shear stress in cells expressing either mutant plakoglobin or plakophilin could be reversed by SB216763, a GSK3ß inhibitor. CONCLUSIONS: Desmosomal mutations linked to ARVC do not significantly affect cell mechanical properties, but cause myocytes to respond abnormally to mechanical stress through a mechanism involving GSK3ß. These results may help explain why patients with ARVC experience disease exacerbations following strenuous exercise.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Adhesión Celular
/
Displasia Ventricular Derecha Arritmogénica
/
Miocitos Cardíacos
/
Mecanotransducción Celular
/
Gamma Catenina
/
Placofilinas
/
Uniones Intercelulares
/
Mutación
Límite:
Animals
Idioma:
En
Revista:
Cardiovasc Res
Año:
2014
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Reino Unido