Your browser doesn't support javascript.
loading
Construction the model on the breast cancer survival analysis use support vector machine, logistic regression and decision tree.
Chao, Cheng-Min; Yu, Ya-Wen; Cheng, Bor-Wen; Kuo, Yao-Lung.
Afiliación
  • Chao CM; Department of Business Administration, National Taichung University of Science and Technology, Taichung, Taiwan.
J Med Syst ; 38(10): 106, 2014 Oct.
Article en En | MEDLINE | ID: mdl-25119239
The aim of the paper is to use data mining technology to establish a classification of breast cancer survival patterns, and offers a treatment decision-making reference for the survival ability of women diagnosed with breast cancer in Taiwan. We studied patients with breast cancer in a specific hospital in Central Taiwan to obtain 1,340 data sets. We employed a support vector machine, logistic regression, and a C5.0 decision tree to construct a classification model of breast cancer patients' survival rates, and used a 10-fold cross-validation approach to identify the model. The results show that the establishment of classification tools for the classification of the models yielded an average accuracy rate of more than 90% for both; the SVM provided the best method for constructing the three categories of the classification system for the survival mode. The results of the experiment show that the three methods used to create the classification system, established a high accuracy rate, predicted a more accurate survival ability of women diagnosed with breast cancer, and could be used as a reference when creating a medical decision-making frame.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Simulación por Computador / Neoplasias de la Mama / Árboles de Decisión / Análisis de Supervivencia / Máquina de Vectores de Soporte Tipo de estudio: Health_economic_evaluation / Prognostic_studies / Risk_factors_studies Límite: Female / Humans País/Región como asunto: Asia Idioma: En Revista: J Med Syst Año: 2014 Tipo del documento: Article País de afiliación: Taiwán Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Simulación por Computador / Neoplasias de la Mama / Árboles de Decisión / Análisis de Supervivencia / Máquina de Vectores de Soporte Tipo de estudio: Health_economic_evaluation / Prognostic_studies / Risk_factors_studies Límite: Female / Humans País/Región como asunto: Asia Idioma: En Revista: J Med Syst Año: 2014 Tipo del documento: Article País de afiliación: Taiwán Pais de publicación: Estados Unidos