A CT reconstruction algorithm based on non-aliasing Contourlet transform and compressive sensing.
Comput Math Methods Med
; 2014: 753615, 2014.
Article
en En
| MEDLINE
| ID: mdl-25101142
Compressive sensing (CS) theory has great potential for reconstructing CT images from sparse-views projection data. Currently, total variation (TV-) based CT reconstruction method is a hot research point in medical CT field, which uses the gradient operator as the sparse representation approach during the iteration process. However, the images reconstructed by this method often suffer the smoothing problem; to improve the quality of reconstructed images, this paper proposed a hybrid reconstruction method combining TV and non-aliasing Contourlet transform (NACT) and using the Split-Bregman method to solve the optimization problem. Finally, the simulation results show that the proposed algorithm can reconstruct high-quality CT images from few-views projection using less iteration numbers, which is more effective in suppressing noise and artefacts than algebraic reconstruction technique (ART) and TV-based reconstruction method.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Interpretación de Imagen Radiográfica Asistida por Computador
/
Tomografía Computarizada por Rayos X
Tipo de estudio:
Prognostic_studies
Límite:
Humans
Idioma:
En
Revista:
Comput Math Methods Med
Asunto de la revista:
INFORMATICA MEDICA
Año:
2014
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
Estados Unidos