Your browser doesn't support javascript.
loading
Short-lived charge-transfer excitons in organic photovoltaic cells studied by high-field magneto-photocurrent.
Devir-Wolfman, Ayeleth H; Khachatryan, Bagrat; Gautam, Bhoj R; Tzabary, Lior; Keren, Amit; Tessler, Nir; Vardeny, Z Valy; Ehrenfreund, Eitan.
Afiliación
  • Devir-Wolfman AH; 1] Physics Department, Technion-Israel Institute of Technology, Haifa 32000, Israel [2].
  • Khachatryan B; 1] Physics Department, Technion-Israel Institute of Technology, Haifa 32000, Israel [2].
  • Gautam BR; 1] Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112, USA [2].
  • Tzabary L; Department of Electrical and Computer Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel.
  • Keren A; Physics Department, Technion-Israel Institute of Technology, Haifa 32000, Israel.
  • Tessler N; Department of Electrical and Computer Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel.
  • Vardeny ZV; Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112, USA.
  • Ehrenfreund E; Physics Department, Technion-Israel Institute of Technology, Haifa 32000, Israel.
Nat Commun ; 5: 4529, 2014 Jul 29.
Article en En | MEDLINE | ID: mdl-25073082
The main route of charge photogeneration in efficient organic photovoltaic cells based on bulk hetero-junction donor-acceptor blends involves short-lived charge-transfer excitons at the donor-acceptor interfaces. The cell efficiency is critically affected by the charge-transfer exciton recombination and dissociation processes. By measuring the magneto-photocurrent under ambient conditions at room temperature, we show here that magnetic field-induced spin-mixing among the charge-transfer exciton spin sublevels occurs in fields up to at least 8.5 Tesla. The resulting magneto-photocurrent increases at high fields showing non-saturating behaviour up to the highest applied field. We attribute the observed high-field spin-mixing mechanism to the difference in the donor-acceptor g-factors. The non-saturating magneto-photocurrent response at high field indicates that there exist charge-transfer excitons with lifetime in the sub-nanosecond time domain. The non-Lorentzian high-field magneto-photocurrent response indicates a dispersive decay mechanism that originates due to a broad distribution of charge-transfer exciton lifetimes.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2014 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2014 Tipo del documento: Article Pais de publicación: Reino Unido