Your browser doesn't support javascript.
loading
Function of inhibitory micronetworks is spared by Na+ channel-acting anticonvulsant drugs.
Pothmann, Leonie; Müller, Christina; Averkin, Robert G; Bellistri, Elisa; Miklitz, Carolin; Uebachs, Mischa; Remy, Stefan; Menendez de la Prida, Liset; Beck, Heinz.
Afiliación
  • Pothmann L; Laboratory for Experimental Epileptology and Cognition Research and Department of Epileptology, University of Bonn, 53127 Bonn, Germany.
  • Müller C; Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., 53175 Bonn, Germany.
  • Averkin RG; MTA-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy, and Neuroscience, University of Szeged, Szeged H-6726, Hungary, and.
  • Bellistri E; Instituto Cajal, CSIC, 37. 28002 Madrid, Spain.
  • Miklitz C; Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., 53175 Bonn, Germany.
  • Uebachs M; Laboratory for Experimental Epileptology and Cognition Research and Department of Epileptology, University of Bonn, 53127 Bonn, Germany.
  • Remy S; Department of Epileptology, University of Bonn, 53127 Bonn, Germany, Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., 53175 Bonn, Germany.
  • Menendez de la Prida L; Instituto Cajal, CSIC, 37. 28002 Madrid, Spain.
  • Beck H; Laboratory for Experimental Epileptology and Cognition Research and Department of Epileptology, University of Bonn, 53127 Bonn, Germany, Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., 53175 Bonn, Germany, Heinz.beck@ukb.uni-bonn.de.
J Neurosci ; 34(29): 9720-35, 2014 Jul 16.
Article en En | MEDLINE | ID: mdl-25031410
The mechanisms of action of many CNS drugs have been studied extensively on the level of their target proteins, but the effects of these compounds on the level of complex CNS networks that are composed of different types of excitatory and inhibitory neurons are not well understood. Many currently used anticonvulsant drugs are known to exert potent use-dependent blocking effects on voltage-gated Na(+) channels, which are thought to underlie the inhibition of pathological high-frequency firing. However, some GABAergic inhibitory neurons are capable of firing at very high rates, suggesting that these anticonvulsants should cause impaired GABAergic inhibition. We have, therefore, studied the effects of anticonvulsant drugs acting via use-dependent block of voltage-gated Na(+) channels on GABAergic inhibitory micronetworks in the rodent hippocampus. We find that firing of pyramidal neurons is reliably inhibited in a use-dependent manner by the prototypical Na(+) channel blocker carbamazepine. In contrast, a combination of intrinsic and synaptic properties renders synaptically driven firing of interneurons essentially insensitive to this anticonvulsant. In addition, a combination of voltage imaging and electrophysiological experiments reveal that GABAergic feedforward and feedback inhibition is unaffected by carbamazepine and additional commonly used Na(+) channel-acting anticonvulsants, both in control and epileptic animals. Moreover, inhibition in control and epileptic rats recruited by in vivo activity patterns was similarly unaffected. These results suggest that sparing of inhibition is an important principle underlying the powerful reduction of CNS excitability exerted by anticonvulsant drugs.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Carbamazepina / Canales de Sodio / Potenciales de la Membrana / Anticonvulsivantes / Red Nerviosa / Inhibición Neural / Neuronas Límite: Animals Idioma: En Revista: J Neurosci Año: 2014 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Carbamazepina / Canales de Sodio / Potenciales de la Membrana / Anticonvulsivantes / Red Nerviosa / Inhibición Neural / Neuronas Límite: Animals Idioma: En Revista: J Neurosci Año: 2014 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Estados Unidos