Your browser doesn't support javascript.
loading
Recognizing mild cognitive impairment based on network connectivity analysis of resting EEG with zero reference.
Xu, Peng; Xiong, Xiu Chun; Xue, Qing; Tian, Yin; Peng, Yueheng; Zhang, Rui; Li, Pei Yang; Wang, Yu Ping; Yao, De Zhong.
Afiliación
  • Xu P; Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China.
Physiol Meas ; 35(7): 1279-98, 2014 Jul.
Article en En | MEDLINE | ID: mdl-24853724
The diagnosis of mild cognitive impairment (MCI) is very helpful for early therapeutic interventions of Alzheimer's disease (AD). MCI has been proven to be correlated with disorders in multiple brain areas. In this paper, we used information from resting brain networks at different EEG frequency bands to reliably recognize MCI. Because EEG network analysis is influenced by the reference that is used, we also evaluate the effect of the reference choices on the resting scalp EEG network-based MCI differentiation. The conducted study reveals two aspects: (1) the network-based MCI differentiation is superior to the previously reported classification that uses coherence in the EEG; and (2) the used EEG reference influences the differentiation performance, and the zero approximation technique (reference electrode standardization technique, REST) can construct a more accurate scalp EEG network, which results in a higher differentiation accuracy for MCI. This study indicates that the resting scalp EEG-based network analysis could be valuable for MCI recognition in the future.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Procesamiento de Señales Asistido por Computador / Encéfalo / Electroencefalografía / Disfunción Cognitiva Tipo de estudio: Prognostic_studies Límite: Aged / Female / Humans / Male Idioma: En Revista: Physiol Meas Asunto de la revista: BIOFISICA / ENGENHARIA BIOMEDICA / FISIOLOGIA Año: 2014 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Procesamiento de Señales Asistido por Computador / Encéfalo / Electroencefalografía / Disfunción Cognitiva Tipo de estudio: Prognostic_studies Límite: Aged / Female / Humans / Male Idioma: En Revista: Physiol Meas Asunto de la revista: BIOFISICA / ENGENHARIA BIOMEDICA / FISIOLOGIA Año: 2014 Tipo del documento: Article Pais de publicación: Reino Unido