Your browser doesn't support javascript.
loading
Ammonia-oxidizing archaea use the most energy-efficient aerobic pathway for CO2 fixation.
Könneke, Martin; Schubert, Daniel M; Brown, Philip C; Hügler, Michael; Standfest, Sonja; Schwander, Thomas; Schada von Borzyskowski, Lennart; Erb, Tobias J; Stahl, David A; Berg, Ivan A.
Afiliación
  • Könneke M; Organic Geochemistry Group, MARUM-Center for Marine Environmental Sciences, University of Bremen, 28334 Bremen, Germany;Institut für Chemie und Biologie des Meeres, Oldenburg University, 26111 Oldenburg, Germany;
  • Schubert DM; Mikrobiologie, Fakultät Biologie, Freiburg University, 79104 Freiburg, Germany;
  • Brown PC; Mikrobiologie, Fakultät Biologie, Freiburg University, 79104 Freiburg, Germany;
  • Hügler M; Microbiology Department, Water Technology Center, 76139 Karlsruhe, Germany;
  • Standfest S; Institut für Chemie und Biologie des Meeres, Oldenburg University, 26111 Oldenburg, Germany;
  • Schwander T; Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, 8093 Zurich, Switzerland; and.
  • Schada von Borzyskowski L; Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, 8093 Zurich, Switzerland; and.
  • Erb TJ; Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, 8093 Zurich, Switzerland; and.
  • Stahl DA; Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195.
  • Berg IA; Mikrobiologie, Fakultät Biologie, Freiburg University, 79104 Freiburg, Germany; ivan.berg@biologie.uni-freiburg.de.
Proc Natl Acad Sci U S A ; 111(22): 8239-44, 2014 Jun 03.
Article en En | MEDLINE | ID: mdl-24843170
Archaea of the phylum Thaumarchaeota are among the most abundant prokaryotes on Earth and are widely distributed in marine, terrestrial, and geothermal environments. All studied Thaumarchaeota couple the oxidation of ammonia at extremely low concentrations with carbon fixation. As the predominant nitrifiers in the ocean and in various soils, ammonia-oxidizing archaea contribute significantly to the global nitrogen and carbon cycles. Here we provide biochemical evidence that thaumarchaeal ammonia oxidizers assimilate inorganic carbon via a modified version of the autotrophic hydroxypropionate/hydroxybutyrate cycle of Crenarchaeota that is far more energy efficient than any other aerobic autotrophic pathway. The identified genes of this cycle were found in the genomes of all sequenced representatives of the phylum Thaumarchaeota, indicating the environmental significance of this efficient CO2-fixation pathway. Comparative phylogenetic analysis of proteins of this pathway suggests that the hydroxypropionate/hydroxybutyrate cycle emerged independently in Crenarchaeota and Thaumarchaeota, thus supporting the hypothesis of an early evolutionary separation of both archaeal phyla. We conclude that high efficiency of anabolism exemplified by this autotrophic cycle perfectly suits the lifestyle of ammonia-oxidizing archaea, which thrive at a constantly low energy supply, thus offering a biochemical explanation for their ecological success in nutrient-limited environments.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Dióxido de Carbono / Archaea / Aerobiosis / Procesos Autotróficos / Ciclo del Carbono / Amoníaco Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2014 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Dióxido de Carbono / Archaea / Aerobiosis / Procesos Autotróficos / Ciclo del Carbono / Amoníaco Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2014 Tipo del documento: Article Pais de publicación: Estados Unidos