Kinetic examination of femoral bone modeling in broilers.
Poult Sci
; 93(5): 1122-9, 2014 May.
Article
en En
| MEDLINE
| ID: mdl-24795304
Lameness in broilers can be associated with progressive degeneration of the femoral head leading to femoral head necrosis and osteomyelitis. Femora from clinically healthy broilers were dissected at 7 (n = 35, 2), 14 (n = 32), 21 (n = 33), 28 (n = 34), and 42 (n = 28) d of age, and were processed for bone histomorphometry to examine bone microarchitecture and bone static and dynamic properties in the secondary spongiosa (IISP) of the proximal femoral metaphysis. Body mass increased rapidly with age, whereas the bone volume to tissue volume ratio remained relatively consistent. The bone volume to tissue volume ratio values generally reflected corresponding values for both mean trabecular thickness and mean trabecular number. Bone metabolism was highest on d 7 when significant osteoblast activity was reflected by increased osteoid surface to bone surface and mineralizing surface per bone surface ratios. However, significant declines in osteoblast activity and bone formative processes occurred during the second week of development, such that newly formed but unmineralized bone tissue (osteoid) and the percentages of mineralizing surfaces both were diminished. Osteoclast activity was elevated to the extent that measurement was impossible. Intense osteoclast activity presumably reflects marked bone resorption throughout the experiment. The overall mature trabecular bone volume remained relatively low, which may arise from extensive persistence of chondrocyte columns in the metaphysis, large areas in the metaphysis composed of immature bone, destruction of bone tissue in the primary spongiosa, and potentially reduced bone blood vessel penetration that normally would be necessary for robust development. Delayed bone development in the IISP was attributable to an uncoupling of osteoblast and osteoclast activity, whereby bone resorption (osteoclast activity) outpaced bone formation (osteoblast activity). Insufficient maturation and mineralization of the IISP may contribute to subsequent pathology of the femoral head in fast-growing broilers.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Desarrollo Óseo
/
Pollos
/
Remodelación Ósea
/
Fémur
Límite:
Animals
Idioma:
En
Revista:
Poult Sci
Año:
2014
Tipo del documento:
Article
Pais de publicación:
Reino Unido