Your browser doesn't support javascript.
loading
Vaccination with Gag, Vif, and Nef gene fragments affords partial control of viral replication after mucosal challenge with SIVmac239.
Martins, Mauricio A; Wilson, Nancy A; Piaskowski, Shari M; Weisgrau, Kim L; Furlott, Jessica R; Bonaldo, Myrna C; Veloso de Santana, Marlon G; Rudersdorf, Richard A; Rakasz, Eva G; Keating, Karen D; Chiuchiolo, Maria J; Piatak, Michael; Allison, David B; Parks, Christopher L; Galler, Ricardo; Lifson, Jeffrey D; Watkins, David I.
Afiliación
  • Martins MA; Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, USA.
  • Wilson NA; Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA.
  • Piaskowski SM; Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA.
  • Weisgrau KL; Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA.
  • Furlott JR; Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA.
  • Bonaldo MC; Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil.
  • Veloso de Santana MG; Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, USA.
  • Rudersdorf RA; Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA.
  • Rakasz EG; Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA.
  • Keating KD; Section on Statistical Genetics, Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, USA.
  • Chiuchiolo MJ; International AIDS Vaccine Initiative, AIDS Vaccine Design and Development Laboratory, Brooklyn Army Terminal, Brooklyn, New York, USA.
  • Piatak M; AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, USA.
  • Allison DB; Section on Statistical Genetics, Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, USA.
  • Parks CL; International AIDS Vaccine Initiative, AIDS Vaccine Design and Development Laboratory, Brooklyn Army Terminal, Brooklyn, New York, USA.
  • Galler R; Instituto de Tecnologia em Imunobiológicos, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.
  • Lifson JD; AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, USA.
  • Watkins DI; Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, USA dwatkins@med.miami.edu.
J Virol ; 88(13): 7493-516, 2014 Jul.
Article en En | MEDLINE | ID: mdl-24741098
UNLABELLED: Broadly targeted cellular immune responses are thought to be important for controlling replication of human and simian immunodeficiency viruses (HIV and SIV). However, eliciting such responses by vaccination is complicated by immunodominance, the preferential targeting of only a few of the many possible epitopes of a given antigen. This phenomenon may be due to the coexpression of dominant and subdominant epitopes by the same antigen-presenting cell and may be overcome by distributing these sequences among several different vaccine constructs. Accordingly, we tested whether vaccinating rhesus macaques with "minigenes" encoding fragments of Gag, Vif, and Nef resulted in broadened cellular responses capable of controlling SIV replication. We delivered these minigenes through combinations of recombinant Mycobacterium bovis BCG (rBCG), electroporated recombinant DNA (rDNA) along with an interleukin-12 (IL-12)-expressing plasmid (EP rDNA plus pIL-12), yellow fever vaccine virus 17D (rYF17D), and recombinant adenovirus serotype 5 (rAd5). Although priming with EP rDNA plus pIL-12 increased the breadth of vaccine-induced T-cell responses, this effect was likely due to the improved antigen delivery afforded by electroporation rather than modulation of immunodominance. Indeed, Mamu-A*01(+) vaccinees mounted CD8(+) T cells directed against only one subdominant epitope, regardless of the vaccination regimen. After challenge with SIVmac239, vaccine efficacy was limited to a modest reduction in set point in some of the groups and did not correlate with standard T-cell measurements. These findings suggest that broad T-cell responses elicited by conventional vectors may not be sufficient to substantially contain AIDS virus replication. IMPORTANCE: Immunodominance poses a major obstacle to the generation of broadly targeted, HIV-specific cellular responses by vaccination. Here we attempted to circumvent this phenomenon and thereby broaden the repertoire of SIV-specific cellular responses by vaccinating rhesus macaques with minigenes encoding fragments of Gag, Vif, and Nef. In contrast to previous mouse studies, this strategy appeared to minimally affect monkey CD8(+) T-cell immundominance hierarchies, as seen by the detection of only one subdominant epitope in Mamu-A*01(+) vaccinees. This finding underscores the difficulty of inducing subdominant CD8(+) T cells by vaccination and demonstrates that strategies other than gene fragmentation may be required to significantly alter immunodominance in primates. Although some of the regimens tested here were extremely immunogenic, vaccine efficacy was limited to a modest reduction in set point viremia after challenge with SIVmac239. No correlates of protection were identified. These results reinforce the notion that vaccine immunogenicity does not predict control of AIDS virus replication.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Replicación Viral / Vacunas Sintéticas / Productos del Gen gag / Productos del Gen nef / Productos del Gen vif / Síndrome de Inmunodeficiencia Adquirida del Simio / Vectores Genéticos Tipo de estudio: Prognostic_studies Límite: Animals / Female / Humans / Male Idioma: En Revista: J Virol Año: 2014 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Replicación Viral / Vacunas Sintéticas / Productos del Gen gag / Productos del Gen nef / Productos del Gen vif / Síndrome de Inmunodeficiencia Adquirida del Simio / Vectores Genéticos Tipo de estudio: Prognostic_studies Límite: Animals / Female / Humans / Male Idioma: En Revista: J Virol Año: 2014 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos