Your browser doesn't support javascript.
loading
Influence of many-body interactions during the ionization of gases by short intense optical pulses.
Schuh, K; Hader, J; Moloney, J V; Koch, S W.
Afiliación
  • Schuh K; Arizona Center for Mathematical Sciences, Department of Mathematics, University of Arizona, Tucson, Arizona 85721, USA and College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA.
  • Hader J; Arizona Center for Mathematical Sciences, Department of Mathematics, University of Arizona, Tucson, Arizona 85721, USA and College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA.
  • Moloney JV; Arizona Center for Mathematical Sciences, Department of Mathematics, University of Arizona, Tucson, Arizona 85721, USA and College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA.
  • Koch SW; College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA and Department of Physics and Material Science Center, Philipps-University, 35032 Marburg, Germany.
Article en En | MEDLINE | ID: mdl-24730952
The excitation of atomic gases by short high-intensity optical pulses leads to significant electron ionization. In dilute systems, the generated distribution of ionized electrons is highly anisotropic, reflecting the quantum mechanical properties of the atomic states involved in the many photon transitions. For higher atomic densities, the Coulomb interaction in the electron-ion system leads to the development of an isotropic electron plasma. To study the ionization process in the presence of the many-body interaction, a fully microscopic model is developed that combines a generalized version of the optical Bloch equations describing the optical excitation with a microscopic description of the many-body interactions. The numerical evaluation shows that the Coulomb interaction significantly modifies the distribution anisotropy already during the excitation process. Whereas a reduced anisotropy is still present after the pulse for low ionization degrees and pressures, it is completely absent for elevated gas densities. An ionization degree is predicted that is significantly enhanced by the many-body interactions.
Buscar en Google
Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Phys Rev E Stat Nonlin Soft Matter Phys Asunto de la revista: BIOFISICA / FISIOLOGIA Año: 2014 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos
Buscar en Google
Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Phys Rev E Stat Nonlin Soft Matter Phys Asunto de la revista: BIOFISICA / FISIOLOGIA Año: 2014 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos