Your browser doesn't support javascript.
loading
Finding near-optimal groups of epidemic spreaders in a complex network.
Moores, Geoffrey; Shakarian, Paulo; Macdonald, Brian; Howard, Nicholas.
Afiliación
  • Moores G; Electrical Engineering and Computer Science Department, United States Military Academy, West Point, New York, United States of America; Network Science Center, United States Military Academy, West Point, New York, United States of America.
  • Shakarian P; Electrical Engineering and Computer Science Department, United States Military Academy, West Point, New York, United States of America; Network Science Center, United States Military Academy, West Point, New York, United States of America.
  • Macdonald B; Mathematical Science Department, United States Military Academy, West Point, New York, United States of America; Network Science Center, United States Military Academy, West Point, New York, United States of America.
  • Howard N; Mathematical Science Department, United States Military Academy, West Point, New York, United States of America; Network Science Center, United States Military Academy, West Point, New York, United States of America.
PLoS One ; 9(4): e90303, 2014.
Article en En | MEDLINE | ID: mdl-24694693
In this paper, we present algorithms to find near-optimal sets of epidemic spreaders in complex networks. We extend the notion of local-centrality, a centrality measure previously shown to correspond with a node's ability to spread an epidemic, to sets of nodes by introducing combinatorial local centrality. Though we prove that finding a set of nodes that maximizes this new measure is NP-hard, good approximations are available. We show that a strictly greedy approach obtains the best approximation ratio unless P = NP and then formulate a modified version of this approach that leverages qualities of the network to achieve a faster runtime while maintaining this theoretical guarantee. We perform an experimental evaluation on samples from several different network structures which demonstrate that our algorithm maximizes combinatorial local centrality and consistently chooses the most effective set of nodes to spread infection under the SIR model, relative to selecting the top nodes using many common centrality measures. We also demonstrate that the optimized algorithm we develop scales effectively.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Epidemias / Modelos Biológicos Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Humans Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2014 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Epidemias / Modelos Biológicos Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Humans Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2014 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos