Your browser doesn't support javascript.
loading
Estimating the effective Reynolds number in implicit large-eddy simulation.
Zhou, Ye; Grinstein, Fernando F; Wachtor, Adam J; Haines, Brian M.
Afiliación
  • Zhou Y; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Grinstein FF; MS F644, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
  • Wachtor AJ; MS F644, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
  • Haines BM; MS F644, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
Article en En | MEDLINE | ID: mdl-24580356
In implicit large-eddy simulation (ILES), energy-containing large scales are resolved, and physics capturing numerics are used to spatially filter out unresolved scales and to implicitly model subgrid scale effects. From an applied perspective, it is highly desirable to estimate a characteristic Reynolds number (Re)-and therefore a relevant effective viscosity-so that the impact of resolution on predicted flow quantities and their macroscopic convergence can usefully be characterized. We argue in favor of obtaining robust Re estimates away from the smallest scales of the simulated flow-where numerically controlled dissipation takes place and propose a theoretical basis and framework to determine such measures. ILES examples include forced turbulence as a steady flow case, the Taylor-Green vortex to address transition and decaying turbulence, and simulations of a laser-driven reshock experiment illustrating a fairly complex turbulence problem of current practical interest.
Buscar en Google
Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Phys Rev E Stat Nonlin Soft Matter Phys Asunto de la revista: BIOFISICA / FISIOLOGIA Año: 2014 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos
Buscar en Google
Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Phys Rev E Stat Nonlin Soft Matter Phys Asunto de la revista: BIOFISICA / FISIOLOGIA Año: 2014 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos