Your browser doesn't support javascript.
loading
Effects of adsorption and confinement on nanoporous electrochemistry.
Bae, Je Hyun; Han, Ji-Hyung; Han, Donghyeop; Chung, Taek Dong.
Afiliación
  • Bae JH; Department of Chemistry, Seoul National University, Seoul 151-747, Korea.
  • Han JH; Department of Chemistry, Seoul National University, Seoul 151-747, Korea.
  • Han D; Department of Chemistry, Seoul National University, Seoul 151-747, Korea.
  • Chung TD; Department of Chemistry, Seoul National University, Seoul 151-747, Korea.
Faraday Discuss ; 164: 361-76, 2013.
Article en En | MEDLINE | ID: mdl-24466674
Characteristic molecular dynamics of reactant molecules confined in the space of the nanometer scale augments the frequency of collisions with the electrified surface so that a given faradaic reaction can be enhanced at nanoporous electrodes, the so-called nano-confinement effect. Since this effect is grounded on diffusion inside nanopores, it is predicted that adsorption onto the surface will seriously affect the enhancement by nano-confinement. We experimentally explored the correlation between adsorption and the confinement effect by examining the oxidation of butanol isomers at platinum and gold nanoporous electrodes. The results showed that electrooxidation of 2-butanol, which is a non-adsorption reaction, was enhanced more than that of 1-butanol, which is an adsorption reaction, at nanoporous platinum in acidic media. In contrast, the nanoporous gold electrode, on which 1-butanol is less adsorptive than it is on platinum, enhanced the electrooxidation of 1-butanol greatly. Furthermore, the electrocatalytic activity of nanoporous gold for oxygen reduction reaction was improved so much as to be comparable with that of flat Pt. These findings show that the nano-confinement effect can be appreciable for electrocatalytic oxygen reduction as well as alcohol oxidation unless the adsorption is extensive, and suggests a new strategy in terms of material design for innovative non-noble metal electrocatalysts.
Buscar en Google
Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Faraday Discuss Asunto de la revista: QUIMICA Año: 2013 Tipo del documento: Article Pais de publicación: Reino Unido
Buscar en Google
Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Faraday Discuss Asunto de la revista: QUIMICA Año: 2013 Tipo del documento: Article Pais de publicación: Reino Unido