Your browser doesn't support javascript.
loading
PeaKDEck: a kernel density estimator-based peak calling program for DNaseI-seq data.
McCarthy, Michael T; O'Callaghan, Christopher A.
Afiliación
  • McCarthy MT; Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK.
Bioinformatics ; 30(9): 1302-4, 2014 May 01.
Article en En | MEDLINE | ID: mdl-24407222
Hypersensitivity to DNaseI digestion is a hallmark of open chromatin, and DNaseI-seq allows the genome-wide identification of regions of open chromatin. Interpreting these data is challenging, largely because of inherent variation in signal-to-noise ratio between datasets. We have developed PeaKDEck, a peak calling program that distinguishes signal from noise by randomly sampling read densities and using kernel density estimation to generate a dataset-specific probability distribution of random background signal. PeaKDEck uses this probability distribution to select an appropriate read density threshold for peak calling in each dataset. We benchmark PeaKDEck using published ENCODE DNaseI-seq data and other peak calling programs, and demonstrate superior performance in low signal-to-noise ratio datasets.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Análisis de Secuencia de ADN / Secuenciación de Nucleótidos de Alto Rendimiento Idioma: En Revista: Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2014 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Análisis de Secuencia de ADN / Secuenciación de Nucleótidos de Alto Rendimiento Idioma: En Revista: Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2014 Tipo del documento: Article Pais de publicación: Reino Unido