Your browser doesn't support javascript.
loading
Deviation from symmetrically self-similar branching in trees predicts altered hydraulics, mechanics, light interception and metabolic scaling.
Smith, Duncan D; Sperry, John S; Enquist, Brian J; Savage, Van M; McCulloh, Katherine A; Bentley, Lisa P.
Afiliación
  • Smith DD; Department of Biology, University of Utah, Salt Lake City, UT, 84112, USA.
  • Sperry JS; Department of Biology, University of Utah, Salt Lake City, UT, 84112, USA.
  • Enquist BJ; Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA.
  • Savage VM; Department of Biomathematics, University of California, Los Angeles, CA, 90095, USA.
  • McCulloh KA; Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR , 97331, USA.
  • Bentley LP; Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA.
New Phytol ; 201(1): 217-229, 2014 Jan.
Article en En | MEDLINE | ID: mdl-24102299
The West, Brown, Enquist (WBE) model derives symmetrically self-similar branching to predict metabolic scaling from hydraulic conductance, K, (a metabolism proxy) and tree mass (or volume, V). The original prediction was Kα V(0.75). We ask whether trees differ from WBE symmetry and if it matters for plant function and scaling. We measure tree branching and model how architecture influences K, V, mechanical stability, light interception and metabolic scaling. We quantified branching architecture by measuring the path fraction, Pf : mean/maximum trunk-to-twig pathlength. WBE symmetry produces the maximum, Pf = 1.0. We explored tree morphospace using a probability-based numerical model constrained only by biomechanical principles. Real tree Pf ranged from 0.930 (nearly symmetric) to 0.357 (very asymmetric). At each modeled tree size, a reduction in Pf led to: increased K; decreased V; increased mechanical stability; and decreased light absorption. When Pf was ontogenetically constant, strong asymmetry only slightly steepened metabolic scaling. The Pf ontogeny of real trees, however, was 'U' shaped, resulting in size-dependent metabolic scaling that exceeded 0.75 in small trees before falling below 0.65. Architectural diversity appears to matter considerably for whole-tree hydraulics, mechanics, photosynthesis and potentially metabolic scaling. Optimal architectures likely exist that maximize carbon gain per structural investment.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fotosíntesis / Árboles / Agua / Transpiración de Plantas / Tallos de la Planta / Luz Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: New Phytol Asunto de la revista: BOTANICA Año: 2014 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fotosíntesis / Árboles / Agua / Transpiración de Plantas / Tallos de la Planta / Luz Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: New Phytol Asunto de la revista: BOTANICA Año: 2014 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido