Your browser doesn't support javascript.
loading
Enhancing e-waste estimates: improving data quality by multivariate Input-Output Analysis.
Wang, Feng; Huisman, Jaco; Stevels, Ab; Baldé, Cornelis Peter.
Afiliación
  • Wang F; Institute for Sustainability and Peace, United Nations University, Hermann-Ehler-Str. 10, 53113 Bonn, Germany; Design for Sustainability Lab, Faculty of Industrial Design Engineering, Delft University of Technology, Landbergstraat 15, 2628CE Delft, The Netherlands. Electronic address: fwang@unu.edu.
Waste Manag ; 33(11): 2397-407, 2013 Nov.
Article en En | MEDLINE | ID: mdl-23899476
Waste electrical and electronic equipment (or e-waste) is one of the fastest growing waste streams, which encompasses a wide and increasing spectrum of products. Accurate estimation of e-waste generation is difficult, mainly due to lack of high quality data referred to market and socio-economic dynamics. This paper addresses how to enhance e-waste estimates by providing techniques to increase data quality. An advanced, flexible and multivariate Input-Output Analysis (IOA) method is proposed. It links all three pillars in IOA (product sales, stock and lifespan profiles) to construct mathematical relationships between various data points. By applying this method, the data consolidation steps can generate more accurate time-series datasets from available data pool. This can consequently increase the reliability of e-waste estimates compared to the approach without data processing. A case study in the Netherlands is used to apply the advanced IOA model. As a result, for the first time ever, complete datasets of all three variables for estimating all types of e-waste have been obtained. The result of this study also demonstrates significant disparity between various estimation models, arising from the use of data under different conditions. It shows the importance of applying multivariate approach and multiple sources to improve data quality for modelling, specifically using appropriate time-varying lifespan parameters. Following the case study, a roadmap with a procedural guideline is provided to enhance e-waste estimation studies.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Residuos Electrónicos / Modelos Teóricos Tipo de estudio: Prognostic_studies País/Región como asunto: Europa Idioma: En Revista: Waste Manag Asunto de la revista: SAUDE AMBIENTAL / TOXICOLOGIA Año: 2013 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Residuos Electrónicos / Modelos Teóricos Tipo de estudio: Prognostic_studies País/Región como asunto: Europa Idioma: En Revista: Waste Manag Asunto de la revista: SAUDE AMBIENTAL / TOXICOLOGIA Año: 2013 Tipo del documento: Article Pais de publicación: Estados Unidos