On assessing model fit for distribution-free longitudinal models under missing data.
Stat Med
; 33(1): 143-57, 2014 Jan 15.
Article
en En
| MEDLINE
| ID: mdl-23897653
The generalized estimating equation (GEE), a distribution-free, or semi-parametric, approach for modeling longitudinal data, is used in a wide range of behavioral, psychotherapy, pharmaceutical drug safety, and healthcare-related research studies. Most popular methods for assessing model fit are based on the likelihood function for parametric models, rendering them inappropriate for distribution-free GEE. One rare exception is a score statistic initially proposed by Tsiatis for logistic regression (1980) and later extended by Barnhart and Willamson to GEE (1998). Because GEE only provides valid inference under the missing completely at random assumption and missing values arising in most longitudinal studies do not follow such a restricted mechanism, this GEE-based score test has very limited applications in practice. We propose extensions of this goodness-of-fit test to address missing data under the missing at random assumption, a more realistic model that applies to most studies in practice. We examine the performance of the proposed tests using simulated data and demonstrate the utilities of such tests with data from a real study on geriatric depression and associated medical comorbidities.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Modelos Logísticos
/
Estudios Longitudinales
/
Modelos Estadísticos
Tipo de estudio:
Observational_studies
/
Prognostic_studies
/
Risk_factors_studies
Aspecto:
Patient_preference
Límite:
Aged
/
Aged80
/
Humans
Idioma:
En
Revista:
Stat Med
Año:
2014
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Reino Unido