Your browser doesn't support javascript.
loading
On assessing model fit for distribution-free longitudinal models under missing data.
Wu, P; Tu, X M; Kowalski, J.
Afiliación
  • Wu P; Department of Biostatistics and Computational Biology, Rochester, NY, 14623, U.S.A.
Stat Med ; 33(1): 143-57, 2014 Jan 15.
Article en En | MEDLINE | ID: mdl-23897653
The generalized estimating equation (GEE), a distribution-free, or semi-parametric, approach for modeling longitudinal data, is used in a wide range of behavioral, psychotherapy, pharmaceutical drug safety, and healthcare-related research studies. Most popular methods for assessing model fit are based on the likelihood function for parametric models, rendering them inappropriate for distribution-free GEE. One rare exception is a score statistic initially proposed by Tsiatis for logistic regression (1980) and later extended by Barnhart and Willamson to GEE (1998). Because GEE only provides valid inference under the missing completely at random assumption and missing values arising in most longitudinal studies do not follow such a restricted mechanism, this GEE-based score test has very limited applications in practice. We propose extensions of this goodness-of-fit test to address missing data under the missing at random assumption, a more realistic model that applies to most studies in practice. We examine the performance of the proposed tests using simulated data and demonstrate the utilities of such tests with data from a real study on geriatric depression and associated medical comorbidities.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Modelos Logísticos / Estudios Longitudinales / Modelos Estadísticos Tipo de estudio: Observational_studies / Prognostic_studies / Risk_factors_studies Aspecto: Patient_preference Límite: Aged / Aged80 / Humans Idioma: En Revista: Stat Med Año: 2014 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Modelos Logísticos / Estudios Longitudinales / Modelos Estadísticos Tipo de estudio: Observational_studies / Prognostic_studies / Risk_factors_studies Aspecto: Patient_preference Límite: Aged / Aged80 / Humans Idioma: En Revista: Stat Med Año: 2014 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido