Your browser doesn't support javascript.
loading
Using hidden Markov models to deal with availability bias on line transect surveys.
Borchers, D L; Zucchini, W; Heide-Jørgensen, M P; Cañadas, A; Langrock, R.
Afiliación
  • Borchers DL; Centre for Research into Ecological and Environmental Modelling, The Observatory, Buchanan Gardens, University of St Andrews, Fife KY16 9LZ, Scotland.
Biometrics ; 69(3): 703-13, 2013 Sep.
Article en En | MEDLINE | ID: mdl-23848543
We develop estimators for line transect surveys of animals that are stochastically unavailable for detection while within detection range. The detection process is formulated as a hidden Markov model with a binary state-dependent observation model that depends on both perpendicular and forward distances. This provides a parametric method of dealing with availability bias when estimates of availability process parameters are available even if series of availability events themselves are not. We apply the estimators to an aerial and a shipboard survey of whales, and investigate their properties by simulation. They are shown to be more general and more flexible than existing estimators based on parametric models of the availability process. We also find that methods using availability correction factors can be very biased when surveys are not close to being instantaneous, as can estimators that assume temporal independence in availability when there is temporal dependence.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Cadenas de Markov / Modelos Estadísticos / Biometría Tipo de estudio: Health_economic_evaluation / Prognostic_studies / Risk_factors_studies Límite: Animals Idioma: En Revista: Biometrics Año: 2013 Tipo del documento: Article País de afiliación: Reino Unido Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Cadenas de Markov / Modelos Estadísticos / Biometría Tipo de estudio: Health_economic_evaluation / Prognostic_studies / Risk_factors_studies Límite: Animals Idioma: En Revista: Biometrics Año: 2013 Tipo del documento: Article País de afiliación: Reino Unido Pais de publicación: Estados Unidos