Your browser doesn't support javascript.
loading
Sodium selective ion channel formation in living cell membranes by polyamidoamine dendrimer.
Nyitrai, Gabriella; Keszthelyi, Tamás; Bóta, Attila; Simon, Agnes; Toke, Orsolya; Horváth, Gergo; Pál, Ildikó; Kardos, Julianna; Héja, László.
Afiliación
  • Nyitrai G; Department of Functional Pharmacology, Hungarian Academy of Sciences, Hungary.
Biochim Biophys Acta ; 1828(8): 1873-80, 2013 Aug.
Article en En | MEDLINE | ID: mdl-23597947
Polyamidoamine (PAMAM) dendrimers are highly charged hyperbranched protein-like polymers that are known to interact with cell membranes. In order to disclose the mechanisms of dendrimer-membrane interaction, we monitored the effect of PAMAM generation five (G5) dendrimer on the membrane permeability of living neuronal cells followed by exploring the underlying structural changes with infrared-visible sum frequency vibrational spectroscopy (SVFS), small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). G5 dendrimers were demonstrated to irreversibly increase the membrane permeability of neurons that could be blocked in low-[Na(+)], but not in low-[Ca(2+)] media suggesting the formation of specific Na(+) permeable channels. SFVS measurements on silica supported DPPG-DPPC bilayers suggested G5-specific trans-polarization of the membrane. SAXS data and freeze-fracture TEM imaging of self-organized DPPC vesicle systems demonstrated disruption of DPPC vesicle layers by G5 through polar interactions between G5 terminal amino groups and the anionic head groups of DPPC. We propose a nanoscale mechanism by which G5 incorporates into the membrane through multiple polar interactions that disrupt proximate membrane bilayer and shape a unique hydrophilic Na(+) ion permeable channel around the dendrimer. In addition, we tested whether these artificial Na(+) channels can be exploited as antibiotic tools. We showed that G5 quickly arrest the growth of resistant bacterial strains below 10µg/ml concentration, while they show no detrimental effect on red blood cell viability, offering the chance for the development of new generation anti-resistant antibiotics.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Poliaminas / Sodio / Canales de Sodio / Membrana Celular / Permeabilidad de la Membrana Celular / Dendrímeros / Hipocampo Límite: Animals Idioma: En Revista: Biochim Biophys Acta Año: 2013 Tipo del documento: Article País de afiliación: Hungria Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Poliaminas / Sodio / Canales de Sodio / Membrana Celular / Permeabilidad de la Membrana Celular / Dendrímeros / Hipocampo Límite: Animals Idioma: En Revista: Biochim Biophys Acta Año: 2013 Tipo del documento: Article País de afiliación: Hungria Pais de publicación: Países Bajos