Your browser doesn't support javascript.
loading
The use of two-way linear mixed models in multitreatment meta-analysis.
Piepho, H P; Williams, E R; Madden, L V.
Afiliación
  • Piepho HP; Bioinformatics Unit, Institute of Crop Science, University of Hohenheim, Fruwirthstrasse 23, 70599 Stuttgart, Germany. piepho@uni-hohenheim.de
Biometrics ; 68(4): 1269-77, 2012 Dec.
Article en En | MEDLINE | ID: mdl-22845838
Meta-analysis summarizes the results of a series of trials. When more than two treatments are included in the trials and when the set of treatments tested differs between trials, the combination of results across trials requires some care. Several methods have been proposed for this purpose, which feature under different labels, such as network meta-analysis or mixed treatment comparisons. Two types of linear mixed model can be used for meta-analysis. The one expresses the expected outcome of treatments as a contrast to a baseline treatment. The other uses a classical two-way linear predictor with main effects for treatment and trial. In this article, we compare both types of model and explore under which conditions they give equivalent results. We illustrate practical advantages of the two-way model using two published datasets. In particular, it is shown that between-trial heterogeneity as well as inconsistency between different types of trial is straightforward to account for.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Modelos Lineales / Metaanálisis como Asunto / Métodos Epidemiológicos / Interpretación Estadística de Datos / Evaluación de Resultado en la Atención de Salud Tipo de estudio: Prognostic_studies / Systematic_reviews Idioma: En Revista: Biometrics Año: 2012 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Modelos Lineales / Metaanálisis como Asunto / Métodos Epidemiológicos / Interpretación Estadística de Datos / Evaluación de Resultado en la Atención de Salud Tipo de estudio: Prognostic_studies / Systematic_reviews Idioma: En Revista: Biometrics Año: 2012 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Estados Unidos