Stabilization of fenofibrate in low molecular weight hydroxypropylcellulose matrices produced by hot-melt extrusion.
Drug Dev Ind Pharm
; 39(2): 290-8, 2013 Feb.
Article
en En
| MEDLINE
| ID: mdl-22524504
The objective of this study was to improve the dissolution rate and to enhance the stability of a poorly water-soluble and low glass-trasition temperature (T(g)) model drug, fenofibrate, in low molecular weight grades of hydroxypropylcellulose matrices produced by hot-melt extrusion (HME). Percent drug loading had a significant effect on the extrudability of the formulations. Dissolution rate of fenofibrate from melt extruded pellets was faster than that of the pure drug (p < 0.05). Incorporation of sugars within the formulation further increased the fenofibrate release rates. Differential scanning calorimetry results revealed that the crystalline drug was converted into an amorphous form during the HME process. Fenofibrate is prone to recrystallization due to its low T(g). Various polymers were evaluated as stabilizing agents among which polyvinylpyrrolidone 17PF and amino methacrylate copolymer exhibited a significant inhibitory effect on fenofibrate recrystallization in the hot-melt extrudates. Subsequently immediate-release fenofibrate tablets were successfully developed and complete drug release was achieved within 5 min. The dissolution profile was comparable to that of a currently marketed formulation. The hot-melt extruded fenofibrate tablets were stable, and exhibited an unchanged drug release profile after 3-month storage at 40°C/75% RH.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Polímeros
/
Fenofibrato
/
Celulosa
/
Composición de Medicamentos
/
Hipolipemiantes
Idioma:
En
Revista:
Drug Dev Ind Pharm
Año:
2013
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Reino Unido