Bias-stress effect in 1,2-ethanedithiol-treated PbS quantum dot field-effect transistors.
ACS Nano
; 6(4): 3121-7, 2012 Apr 24.
Article
en En
| MEDLINE
| ID: mdl-22480161
We investigate the bias-stress effect in field-effect transistors (FETs) consisting of 1,2-ethanedithiol-treated PbS quantum dot (QD) films as charge transport layers in a top-gated configuration. The FETs exhibit ambipolar operation with typical mobilities on the order of µ(e) = 8 × 10(-3) cm(2) V(-1) s(-1) in n-channel operation and µ(h) = 1 × 10(-3) cm(2) V(-1) s(-1) in p-channel operation. When the FET is turned on in n-channel or p-channel mode, the established drain-source current rapidly decreases from its initial magnitude in a stretched exponential decay, manifesting the bias-stress effect. The choice of dielectric is found to have little effect on the characteristics of this bias-stress effect, leading us to conclude that the associated charge-trapping process originates within the QD film itself. Measurements of bias-stress-induced time-dependent decays in the drain-source current (I(DS)) are well fit to stretched exponential functions, and the time constants of these decays in n-channel and p-channel operation are found to follow thermally activated (Arrhenius) behavior. Measurements as a function of QD size reveal that the stressing process in n-channel operation is faster for QDs of a smaller diameter while stress in p-channel operation is found to be relatively invariant to QD size. Our results are consistent with a mechanism in which field-induced nanoscale morphological changes within the QD film result in screening of the applied gate field. This phenomenon is entirely recoverable, which allows us to repeatedly observe bias stress and recovery characteristics on the same device. This work elucidates aspects of charge transport in chemically treated lead chalcogenide QD films and is of relevance to ongoing investigations toward employing these films in optoelectronic devices.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
ACS Nano
Año:
2012
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Estados Unidos