Your browser doesn't support javascript.
loading
Analysis of large scale spatial variability of soil moisture using a geostatistical method.
Lakhankar, Tarendra; Jones, Andrew S; Combs, Cynthia L; Sengupta, Manajit; Vonder Haar, Thomas H; Khanbilvardi, Reza.
Afiliación
  • Lakhankar T; NOAA-Cooperative Remote Sensing Science & Technology Center, (NOAA-CREST), City University of New York, NY 10031, USA. tlakhankar@ccny.cuny.edu
Sensors (Basel) ; 10(1): 913-32, 2010.
Article en En | MEDLINE | ID: mdl-22315576
Spatial and temporal soil moisture dynamics are critically needed to improve the parameterization for hydrological and meteorological modeling processes. This study evaluates the statistical spatial structure of large-scale observed and simulated estimates of soil moisture under pre- and post-precipitation event conditions. This large scale variability is a crucial in calibration and validation of large-scale satellite based data assimilation systems. Spatial analysis using geostatistical approaches was used to validate modeled soil moisture by the Agriculture Meteorological (AGRMET) model using in situ measurements of soil moisture from a state-wide environmental monitoring network (Oklahoma Mesonet). The results show that AGRMET data produces larger spatial decorrelation compared to in situ based soil moisture data. The precipitation storms drive the soil moisture spatial structures at large scale, found smaller decorrelation length after precipitation. This study also evaluates the geostatistical approach for mitigation for quality control issues within in situ soil moisture network to estimates at soil moisture at unsampled stations.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Suelo / Agua / Monitoreo del Ambiente / Modelos Estadísticos Tipo de estudio: Risk_factors_studies Idioma: En Revista: Sensors (Basel) Año: 2010 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Suelo / Agua / Monitoreo del Ambiente / Modelos Estadísticos Tipo de estudio: Risk_factors_studies Idioma: En Revista: Sensors (Basel) Año: 2010 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Suiza