Accelerated decolorization of reactive azo dyes under saline conditions by bacteria isolated from Arabian seawater sediment.
Appl Microbiol Biotechnol
; 96(6): 1599-606, 2012 Dec.
Article
en En
| MEDLINE
| ID: mdl-22290645
Presence of huge amount of salts in the wastewater of textile dyeing industry is one of the major limiting factors in the development of an effective biotreatment system for the removal of azo dyes from textile effluents. Bacterial spp. capable of thriving under high salt conditions could be employed for the treatment of saline dyecontaminated textile wastewaters. The present study was aimed at isolating the most efficient bacterial strains capable of decolorizing azo dyes under high saline conditions. Fiftyeight bacterial strains were isolated from seawater, seawater sediment, and saline soil, using mineral salt medium enriched with 100 mg l−1 Reactive Black-5 azo dye and 50 g NaCl l−1 salt concentration. Bacterial strains KS23 (Psychrobacter alimentarius) and KS26 (Staphylococcus equorum) isolated from seawater sediment were able to decolorize three reactive dyes including Reactive Black 5, Reactive Golden Ovifix, and Reactive Blue BRS very efficiently in liquid medium over a wide range of salt concentration (0-100 g NaCl l)⻹. Time required for complete decolorization of 100 mg dye l ⻹ varied with the type of dye and salt concentration. In general, there was an inverse linear relationship between the velocity of the decolorization reaction (V) and salt concentration. This study suggested that bacteria isolated from saline conditions such as seawater sediment could be used in designing a bioreactor for the treatment of textile effluent containing high concentration of salts.
Buscar en Google
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Agua de Mar
/
Compuestos Azo
/
Bacterias
/
Cloruro de Sodio
/
Sedimentos Geológicos
/
Colorantes
Idioma:
En
Revista:
Appl Microbiol Biotechnol
Año:
2012
Tipo del documento:
Article
País de afiliación:
Pakistán
Pais de publicación:
Alemania